TY - JOUR
T1 - Myrica nagi attenuates cumene hydroperoxide-induced cutaneous oxidative stress and toxicity in Swiss albino mice
AU - Alam, Aftab
AU - Iqbal, Mohammad
AU - Saleem, Mohammad
AU - Ahmed, Salah Uddin
AU - Sultana, Sarwat
PY - 2000/6/17
Y1 - 2000/6/17
N2 - In recent years, considerable efforts have been made to identify new chemopreventive agents which could be useful for man. Myrica nagi, a subtropical shrub, has been shown to possess significant activity against hepatotoxicity and other pharmacological and physiological disorders. We have shown a chemopreventive effect of Myrica nagi on cumene hydroperoxide-induced cutaneous oxidative stress and toxicity in mice. Cumene hydroperoxide treatment at a dose level of 30 mg/animal/0.2 ml acetone enhances susceptibility of cutaneous microsomal membrane for iron-ascorbate-induced lipid peroxidation and induction of xanthine oxidase activity which are accompanied by decrease in the activities of cutaneous antioxidant enzymes such as catalase, glutathione peroxidase, glutathione reductase, glucose-6- phosphate dehydrogenase and depletion in the level of cutaneous glutathione. Parallel to these changes a sharp decrease in the activities of phase II metabolizing enzymes such as glutathione S-transferase and quinone reductase has been observed. Application of Myrica nagi at doses of 2.0 mg and 4.0 mg/kg body weight in acetone prior to that of cumene hydroperoxide (30 mg/animal/0.2 ml acetone) treatment resulted in significant inhibition of cumene hydroperoxide-induced cutaneous oxidative stress and toxicity in a dose-dependent manner. Enhanced susceptibility of cutaneous microsomal membrane for lipid peroxidation induced by iron ascorbate and xanthine oxidase activities were significantly reduced (P<0.05). In addition the depleted level of glutathione, the inhibited activities of antioxidants, and phase II metabolizing enzymes were recovered to a significant level (P<0.05). The protective effect of Myrica nagi was dose-dependent. In summary our data suggest that Myrica nagi is an effective chemopreventive agent in skin and capable of ameliorating cumene hydroperoxide-induced cutaneous oxidative stress and toxicity.
AB - In recent years, considerable efforts have been made to identify new chemopreventive agents which could be useful for man. Myrica nagi, a subtropical shrub, has been shown to possess significant activity against hepatotoxicity and other pharmacological and physiological disorders. We have shown a chemopreventive effect of Myrica nagi on cumene hydroperoxide-induced cutaneous oxidative stress and toxicity in mice. Cumene hydroperoxide treatment at a dose level of 30 mg/animal/0.2 ml acetone enhances susceptibility of cutaneous microsomal membrane for iron-ascorbate-induced lipid peroxidation and induction of xanthine oxidase activity which are accompanied by decrease in the activities of cutaneous antioxidant enzymes such as catalase, glutathione peroxidase, glutathione reductase, glucose-6- phosphate dehydrogenase and depletion in the level of cutaneous glutathione. Parallel to these changes a sharp decrease in the activities of phase II metabolizing enzymes such as glutathione S-transferase and quinone reductase has been observed. Application of Myrica nagi at doses of 2.0 mg and 4.0 mg/kg body weight in acetone prior to that of cumene hydroperoxide (30 mg/animal/0.2 ml acetone) treatment resulted in significant inhibition of cumene hydroperoxide-induced cutaneous oxidative stress and toxicity in a dose-dependent manner. Enhanced susceptibility of cutaneous microsomal membrane for lipid peroxidation induced by iron ascorbate and xanthine oxidase activities were significantly reduced (P<0.05). In addition the depleted level of glutathione, the inhibited activities of antioxidants, and phase II metabolizing enzymes were recovered to a significant level (P<0.05). The protective effect of Myrica nagi was dose-dependent. In summary our data suggest that Myrica nagi is an effective chemopreventive agent in skin and capable of ameliorating cumene hydroperoxide-induced cutaneous oxidative stress and toxicity.
UR - http://www.scopus.com/inward/record.url?scp=0034072323&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034072323&partnerID=8YFLogxK
M3 - Article
C2 - 10862502
AN - SCOPUS:0034072323
VL - 86
SP - 209
EP - 214
JO - Pharmacology and Toxicology
JF - Pharmacology and Toxicology
SN - 1742-7835
IS - 5
ER -