TY - JOUR
T1 - Myosin I overexpression impairs cell migration
AU - Novak, Kristine D.
AU - Titus, Margaret A.
PY - 1997
Y1 - 1997
N2 - Dictyostelium myoB, a member of the myosin I family of motor proteins, is important for controlling the formation and retraction of membrane projections by the cell's actin cortex (Novak, K.D., M.D. Peterson, M.C. Reedy, and M.A. Titus. 1995. J. Cell Biol. 131:1205 1221). Mutants that express a three- to sevenfold excess of myoB (myoB+ cells) were generated to further analyze the role of myosin I in these processes. The myoB+ cells move with an instantaneous velocity that is 35% of the wild-type rate and exhibit a 6-8-h delay in initiation of aggregation when placed under starvation conditions. The myoB+ cells complete the developmental cycle after an extended period of time, but they form fewer fruiting bodies that appear to be small and abnormal. The myoB+ cells are also deficient in their ability both to form distinct F-actin filled projections such as crowns and to become elongate and polarized. This defect can be attributed to the presence of at least threefold more myoB at the cortex of the myoB+ cells. In contrast, threefold over-expression of a truncated myoB that lacks the src hormology 3 (SH3) domain (myoB/SH3- cells) or myoB in which the consensus heavy chain phosphorylation site was mutated to an alanine (S332A-myoB) does not disturb normal cellular function. However, there is an increased concentration of myoB in the cortex of the myoB/SH3 and S332A-myoB cells comparable to that found in the myoB+ cells. These results suggest that excess full-length cortical myoB prevents the formation of the actin-filled extensions required for locomotion by increasing the tension of the F-actin cytoskeleton and/or retracting projections before they can fully extend. They also demonstrate a role for the phosphorylation site and SH3 domain in mediating the in vivo activity of myosin I.
AB - Dictyostelium myoB, a member of the myosin I family of motor proteins, is important for controlling the formation and retraction of membrane projections by the cell's actin cortex (Novak, K.D., M.D. Peterson, M.C. Reedy, and M.A. Titus. 1995. J. Cell Biol. 131:1205 1221). Mutants that express a three- to sevenfold excess of myoB (myoB+ cells) were generated to further analyze the role of myosin I in these processes. The myoB+ cells move with an instantaneous velocity that is 35% of the wild-type rate and exhibit a 6-8-h delay in initiation of aggregation when placed under starvation conditions. The myoB+ cells complete the developmental cycle after an extended period of time, but they form fewer fruiting bodies that appear to be small and abnormal. The myoB+ cells are also deficient in their ability both to form distinct F-actin filled projections such as crowns and to become elongate and polarized. This defect can be attributed to the presence of at least threefold more myoB at the cortex of the myoB+ cells. In contrast, threefold over-expression of a truncated myoB that lacks the src hormology 3 (SH3) domain (myoB/SH3- cells) or myoB in which the consensus heavy chain phosphorylation site was mutated to an alanine (S332A-myoB) does not disturb normal cellular function. However, there is an increased concentration of myoB in the cortex of the myoB/SH3 and S332A-myoB cells comparable to that found in the myoB+ cells. These results suggest that excess full-length cortical myoB prevents the formation of the actin-filled extensions required for locomotion by increasing the tension of the F-actin cytoskeleton and/or retracting projections before they can fully extend. They also demonstrate a role for the phosphorylation site and SH3 domain in mediating the in vivo activity of myosin I.
UR - http://www.scopus.com/inward/record.url?scp=0031045035&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031045035&partnerID=8YFLogxK
U2 - 10.1083/jcb.136.3.633
DO - 10.1083/jcb.136.3.633
M3 - Article
C2 - 9024693
AN - SCOPUS:0031045035
SN - 0021-9525
VL - 136
SP - 633
EP - 647
JO - Journal of Cell Biology
JF - Journal of Cell Biology
IS - 3
ER -