Myofibrillar myosin ATPase activity in hindlimb muscles from young and aged rats

Dawn A. Lowe, Aimee D. Husom, Deborah A. Ferrington, La Dora V. Thompson

Research output: Contribution to journalArticle

28 Scopus citations

Abstract

We tested the hypothesis that Ca 2+-activated myosin ATPase activity is lower in muscles of aged rats relative to muscles of young rats, independent of changes in myosin isoform expression. Myofibrils were prepared from permeabilized fibers of soleus, plantaris, and semimembranosus muscles of young (8-12 months) and aged (32-38 months) F344 × BN rats and assayed for resting myosin ATPase, Ca 2+-activated myosin ATPase, and myosin heavy chain (MHC) and myosin light chain (MLC) isoform compositions. Resting myosin ATPases were not affected by age in any muscle (P ≥ 0.42). Ca 2+-activated myosin ATPases of soleus and plantaris myofibrils were not affected by age (P ≥ 0.31) but were 16% lower in semimembranosus myofibrils from aged rats (0.448 ± 0.019 μmol P i/min/mg) compared to young rats (0.533 ± 0.031 μmol P i/min/mg; P = 0.03). Correspondingly, maximal unloaded shortening velocity of single semimembranosus fibers from aged rats was slow (4.6 ± 0.2 fiber lengths/s) compared with fibers from young rats (5.8 ± 0.3 fiber lengths/s; P < 0.01). No age-related changes in MHC or regulatory MLC isoforms were detected in any muscle (P ≥ 0.08) but changes in the essential MLC occurred in plantaris and semimembranosus muscles. The data indicate that Ca 2+-activated myosin ATPase activity is reduced with age in semimembranosus muscle, independent of age-related changes in MHC isoform expression, and is one mechanism contributing to age-related slowing of contraction in that muscle.

Original languageEnglish (US)
Pages (from-to)619-627
Number of pages9
JournalMechanisms of Ageing and Development
Volume125
Issue number9
DOIs
StatePublished - Sep 1 2004

Keywords

  • Actomyosin adenosinetriphosphatase
  • Aging
  • Myosin heavy chain
  • Myosin light chain
  • Slack test

Fingerprint Dive into the research topics of 'Myofibrillar myosin ATPase activity in hindlimb muscles from young and aged rats'. Together they form a unique fingerprint.

  • Cite this