TY - JOUR
T1 - Muon spin relaxation study of superconducting Bi2 Sr2-x Lax Cu O6+δ
AU - Russo, P. L.
AU - Wiebe, C. R.
AU - Uemura, Y. J.
AU - Savici, A. T.
AU - MacDougall, G. J.
AU - Rodriguez, J.
AU - Luke, G. M.
AU - Kaneko, N.
AU - Eisaki, H.
AU - Greven, M.
AU - Vajk, O. P.
AU - Ono, S.
AU - Ando, Yoichi
AU - Fujita, K.
AU - Kojima, K. M.
AU - Uchida, S.
N1 - Copyright:
Copyright 2007 Elsevier B.V., All rights reserved.
PY - 2007/2/15
Y1 - 2007/2/15
N2 - We have performed transverse-field (TF) and zero-field (ZF) μSR measurements of Bi2 Sr2-x Lax Cu O6+δ (Bi2201) systems with x=0.2, 0.4, 0.6, and 1.0, using ceramic specimens with modest c -axis alignment and single-crystal specimens. The absence of static magnetic order has been confirmed in underdoped (x=0.6) and optimally doped (x=0.4) systems at T=2 K, while only a very weak signature towards static magnetism has been found at T=2 K in the x=1.0 system, which is a lightly hole-doped nonsuperconducting insulator. In the superconducting (x=0.6, 0.4, and 0.2) systems, the relaxation rate σ in TF- μSR, proportional to ns m* (superconducting carrier density and effective mass), followed a general trend found in other cuprate systems in a plot of Tc vs ns m* (T→0). Assuming the in-plane effective mass m* for Bi2201 to be comparable to three to four times the bare electron mass me as found in La2-x Srx Cu O4 (LSCO) and YBa2 Cu3 O7-δ (YBCO) systems, we obtain ns ∼0.15-0.2 per Cu for the x=0.4 Bi2201 system. This carrier density is much smaller than the Hall number nHall ∼10 per Cu obtained at T<1.6 K in high magnetic fields (40-60 T) along the c axis applied to suppress superconductivity. The present results of the superfluid density (ns m*) in Bi2201 are compared with those from other cuprate systems, including YBCO systems with very much reduced Tc <20 K studied by microwave, Hc1, and inductance methods. Additional muon-spin-relaxation (μSR) measurements have been performed on a single-crystal specimen of Bi2201 (x=0.4) in a high transverse magnetic field of 5 T parallel to the c axis, in order to search for the field-induced muon spin relaxation recently found in LSCO and some other high-temperature superconducting cuprate (HTSC) systems well above Tc. The nearly temperature-independent and very small relaxation rate observed in Bi2201 above Tc rules out a hypothesis that the field-induced relaxation is directly proportional to the magnitude of the Nernst coefficient, which is a measure of the strength of dynamic superconductivity. We also describe a procedure for angular averaging of σ in μSR measurements using ceramic specimens with modest alignment of c -axis orientations, together with the neutron-scattering results obtained for determining the orientation distribution of microcrystallites in the present ceramic specimens.
AB - We have performed transverse-field (TF) and zero-field (ZF) μSR measurements of Bi2 Sr2-x Lax Cu O6+δ (Bi2201) systems with x=0.2, 0.4, 0.6, and 1.0, using ceramic specimens with modest c -axis alignment and single-crystal specimens. The absence of static magnetic order has been confirmed in underdoped (x=0.6) and optimally doped (x=0.4) systems at T=2 K, while only a very weak signature towards static magnetism has been found at T=2 K in the x=1.0 system, which is a lightly hole-doped nonsuperconducting insulator. In the superconducting (x=0.6, 0.4, and 0.2) systems, the relaxation rate σ in TF- μSR, proportional to ns m* (superconducting carrier density and effective mass), followed a general trend found in other cuprate systems in a plot of Tc vs ns m* (T→0). Assuming the in-plane effective mass m* for Bi2201 to be comparable to three to four times the bare electron mass me as found in La2-x Srx Cu O4 (LSCO) and YBa2 Cu3 O7-δ (YBCO) systems, we obtain ns ∼0.15-0.2 per Cu for the x=0.4 Bi2201 system. This carrier density is much smaller than the Hall number nHall ∼10 per Cu obtained at T<1.6 K in high magnetic fields (40-60 T) along the c axis applied to suppress superconductivity. The present results of the superfluid density (ns m*) in Bi2201 are compared with those from other cuprate systems, including YBCO systems with very much reduced Tc <20 K studied by microwave, Hc1, and inductance methods. Additional muon-spin-relaxation (μSR) measurements have been performed on a single-crystal specimen of Bi2201 (x=0.4) in a high transverse magnetic field of 5 T parallel to the c axis, in order to search for the field-induced muon spin relaxation recently found in LSCO and some other high-temperature superconducting cuprate (HTSC) systems well above Tc. The nearly temperature-independent and very small relaxation rate observed in Bi2201 above Tc rules out a hypothesis that the field-induced relaxation is directly proportional to the magnitude of the Nernst coefficient, which is a measure of the strength of dynamic superconductivity. We also describe a procedure for angular averaging of σ in μSR measurements using ceramic specimens with modest alignment of c -axis orientations, together with the neutron-scattering results obtained for determining the orientation distribution of microcrystallites in the present ceramic specimens.
UR - http://www.scopus.com/inward/record.url?scp=33847253097&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33847253097&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.75.054511
DO - 10.1103/PhysRevB.75.054511
M3 - Article
AN - SCOPUS:33847253097
SN - 1098-0121
VL - 75
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 5
M1 - 054511
ER -