TY - JOUR
T1 - Multiparametric MRI of epiphyseal cartilage necrosis (osteochondrosis) with histological validation in a goat model
AU - Wang, Luning
AU - Nissi, Mikko J.
AU - Tóth, Ferenc
AU - Shaver, Jonah
AU - Johnson, Casey P.
AU - Zhang, Jinjin
AU - Garwood, Michael
AU - Carlson, Cathy S.
AU - Ellermann, Jutta M.
N1 - Publisher Copyright:
© 2015 Wang et al This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2015/10/16
Y1 - 2015/10/16
N2 - Purpose To evaluate multiple MRI parameters in a surgical model of osteochondrosis (OC) in goats. Methods Focal ischemic lesions of two different sizes were induced in the epiphyseal cartilage of the medial femoral condyles of goats at 4 days of age by surgical transection of cartilage canal blood vessels. Goats were euthanized and specimens harvested 3, 4, 5, 6, 9 and 10 weeks post-op. Ex vivo MRI scans were conducted at 9.4 Tesla for mapping the T1, T2, T1ñ, adiabatic T1ñ and TRAFF relaxation times of articular cartilage, unaffected epiphyseal cartilage, and epiphyseal cartilage within the area of the induced lesion. After MRI scans, safranin O staining was conducted to validate areas of ischemic necrosis induced in the medial femoral condyles of six goats, and to allow comparison of MRI findings with the semi-quantitative proteoglycan assessment in corresponding safranin O-stained histological sections. Results All relaxation time constants differentiated normal epiphyseal cartilage from lesions of ischemic cartilage necrosis, and the histological staining results confirmed the proteoglycan (PG) loss in the areas of ischemia. In the scanned specimens, all of the measured relaxation time constants were higher in the articular than in the normal epiphyseal cartilage, consistently allowing differentiation between these two tissues. Conclusions Multiparametric MRI provided a sensitive approach to discriminate between necrotic and viable epiphyseal cartilage and between articular and epiphyseal cartilage, which may be useful for diagnosing and monitoring OC lesions and, potentially, for assessing effectiveness of treatment interventions.
AB - Purpose To evaluate multiple MRI parameters in a surgical model of osteochondrosis (OC) in goats. Methods Focal ischemic lesions of two different sizes were induced in the epiphyseal cartilage of the medial femoral condyles of goats at 4 days of age by surgical transection of cartilage canal blood vessels. Goats were euthanized and specimens harvested 3, 4, 5, 6, 9 and 10 weeks post-op. Ex vivo MRI scans were conducted at 9.4 Tesla for mapping the T1, T2, T1ñ, adiabatic T1ñ and TRAFF relaxation times of articular cartilage, unaffected epiphyseal cartilage, and epiphyseal cartilage within the area of the induced lesion. After MRI scans, safranin O staining was conducted to validate areas of ischemic necrosis induced in the medial femoral condyles of six goats, and to allow comparison of MRI findings with the semi-quantitative proteoglycan assessment in corresponding safranin O-stained histological sections. Results All relaxation time constants differentiated normal epiphyseal cartilage from lesions of ischemic cartilage necrosis, and the histological staining results confirmed the proteoglycan (PG) loss in the areas of ischemia. In the scanned specimens, all of the measured relaxation time constants were higher in the articular than in the normal epiphyseal cartilage, consistently allowing differentiation between these two tissues. Conclusions Multiparametric MRI provided a sensitive approach to discriminate between necrotic and viable epiphyseal cartilage and between articular and epiphyseal cartilage, which may be useful for diagnosing and monitoring OC lesions and, potentially, for assessing effectiveness of treatment interventions.
UR - http://www.scopus.com/inward/record.url?scp=84949033977&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84949033977&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0140400
DO - 10.1371/journal.pone.0140400
M3 - Article
C2 - 26473611
AN - SCOPUS:84949033977
SN - 1932-6203
VL - 10
JO - PloS one
JF - PloS one
IS - 10
M1 - e0140400
ER -