MultiCalib: National-scale traffic model calibration in real time with multi-source incomplete data

Desheng Zhang, Fan Zhang, Tian He

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

Real-time traffic modeling at national scale is essential to many applications, but its calibration is extremely challenging due to its large spatial and fine temporal coverage. The existing work mostly is focused on urban-scale calibration with complete field data from single data sources (e.g., loop sensors or taxis), which cannot be generalized to national scale, because complete single-source field data at national scale are almost impossible to obtain. To address this challenge, in this paper, we design MultiCalib, a model calibration framework to optimize traffic models based on multiple incomplete data sources at national scale in real time. Instead of naively combining multi-source data, we theoretically formulate a multi-source model calibration problem based on real-world contexts and multi-view learning. More importantly, we implement and evaluate MultiCalib with two heterogeneous nationwide vehicle networks with 340,000 vehicles to infer traffic conditions on 36 expressways and 119 highways, along with 4 cities across China. The results show that MultiCalib outperforms state-of-theart calibration by 25% on average with same input data.

Original languageEnglish (US)
Title of host publication24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2016
EditorsMatthias Renz, Mohamed Ali, Shawn Newsam, Matthias Renz, Siva Ravada, Goce Trajcevski
PublisherAssociation for Computing Machinery
ISBN (Electronic)9781450345897
DOIs
StatePublished - Oct 31 2016
Event24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2016 - Burlingame, United States
Duration: Oct 31 2016Nov 3 2016

Publication series

NameGIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems

Other

Other24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2016
Country/TerritoryUnited States
CityBurlingame
Period10/31/1611/3/16

Bibliographical note

Publisher Copyright:
© 2016 ACM.

Keywords

  • Incomplete Data
  • Model Calibration

Fingerprint

Dive into the research topics of 'MultiCalib: National-scale traffic model calibration in real time with multi-source incomplete data'. Together they form a unique fingerprint.

Cite this