Abstract
Dynamic functional connectivity (dFC) analyses of fMRI time-courses are typically performed using sliding-window based schemes. Such approaches not only inherently confine analysis to a single time-scale, but also do not generally lend themselves to accurate change-time estimates of the dynamically evolving graph topology. Change point detection methods on the other hand, offer the potential to overcome both limitations. However, the approaches employed so far in the dFC context are limited to detecting changes in linear relationships among time-courses corresponding to distinct regions of the brain. The present work puts forth a novel multi-kernel change point detection approach with the goal of capturing changes in the generally nonlinear relationships among time-courses, and thus in the topologies of the corresponding dynamically evolving FC graphs. The approach is tested on dynamic causal model (DCM) based synthetic resting-state fMRI data.
Original language | English (US) |
---|---|
Title of host publication | Conference Record of 51st Asilomar Conference on Signals, Systems and Computers, ACSSC 2017 |
Editors | Michael B. Matthews |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1555-1559 |
Number of pages | 5 |
ISBN (Electronic) | 9781538618233 |
DOIs | |
State | Published - Jul 2 2017 |
Event | 51st Asilomar Conference on Signals, Systems and Computers, ACSSC 2017 - Pacific Grove, United States Duration: Oct 29 2017 → Nov 1 2017 |
Publication series
Name | Conference Record of 51st Asilomar Conference on Signals, Systems and Computers, ACSSC 2017 |
---|---|
Volume | 2017-October |
Other
Other | 51st Asilomar Conference on Signals, Systems and Computers, ACSSC 2017 |
---|---|
Country/Territory | United States |
City | Pacific Grove |
Period | 10/29/17 → 11/1/17 |
Bibliographical note
Publisher Copyright:© 2017 IEEE.
Keywords
- change detection
- fMRI
- kernel-based regression
- multiple kernel learning