Multi-Group Proportional Representation in Retrieval

Alex Oesterling, Claudio Mayrink Verdun, Carol Xuan Long, Alexander Glynn, Lucas Monteiro Paes, Sajani Vithana, Martina Cardone, Flavio P. Calmon

Research output: Contribution to journalConference articlepeer-review

Abstract

Image search and retrieval tasks can perpetuate harmful stereotypes, erase cultural identities, and amplify social disparities. Current approaches to mitigate these representational harms balance the number of retrieved items across population groups defined by a small number of (often binary) attributes. However, most existing methods overlook intersectional groups determined by combinations of group attributes, such as gender, race, and ethnicity. We introduce Multi-Group Proportional Representation (MPR), a novel metric that measures representation across intersectional groups. We develop practical methods for estimating MPR, provide theoretical guarantees, and propose optimization algorithms to ensure MPR in retrieval. We demonstrate that existing methods optimizing for equal and proportional representation metrics may fail to promote MPR. Crucially, our work shows that optimizing MPR yields more proportional representation across multiple intersectional groups specified by a rich function class, often with minimal compromise in retrieval accuracy. Code is provided at https://github.com/alex-oesterling/multigroup-proportional-representation.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume37
StatePublished - 2024
Event38th Conference on Neural Information Processing Systems, NeurIPS 2024 - Vancouver, Canada
Duration: Dec 9 2024Dec 15 2024

Bibliographical note

Publisher Copyright:
© 2024 Neural information processing systems foundation. All rights reserved.

Fingerprint

Dive into the research topics of 'Multi-Group Proportional Representation in Retrieval'. Together they form a unique fingerprint.

Cite this