Multi-band SWIFT enables quiet and artefact-free EEG-fMRI and awake fMRI studies in rat

Jaakko Paasonen, Hanne Laakso, Tiina Pirttimäki, Petteri Stenroos, Raimo A. Salo, Ekaterina Zhurakovskaya, Lauri J. Lehto, Heikki Tanila, Michael Garwood, Shalom Michaeli, Djaudat Idiyatullin, Silvia Mangia, Olli Gröhn

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

Functional magnetic resonance imaging (fMRI) studies in animal models provide invaluable information regarding normal and abnormal brain function, especially when combined with complementary stimulation and recording techniques. The echo planar imaging (EPI) pulse sequence is the most common choice for fMRI investigations, but it has several shortcomings. EPI is one of the loudest sequences and very prone to movement and susceptibility-induced artefacts, making it suboptimal for awake imaging. Additionally, the fast gradient-switching of EPI induces disrupting currents in simultaneous electrophysiological recordings. Therefore, we investigated whether the unique features of Multi-Band SWeep Imaging with Fourier Transformation (MB-SWIFT) overcome these issues at a high 9.4 T magnetic field, making it a potential alternative to EPI. MB-SWIFT had 32-dB and 20-dB lower peak and average sound pressure levels, respectively, than EPI with typical fMRI parameters. Body movements had little to no effect on MB-SWIFT images or functional connectivity analyses, whereas they severely affected EPI data. The minimal gradient steps of MB-SWIFT induced significantly lower currents in simultaneous electrophysiological recordings than EPI, and there were no electrode-induced distortions in MB-SWIFT images. An independent component analysis of the awake rat functional connectivity data obtained with MB-SWIFT resulted in near whole-brain level functional parcellation, and simultaneous electrophysiological and fMRI measurements in isoflurane-anesthetized rats indicated that MB-SWIFT signal is tightly linked to neuronal resting-state activity. Therefore, we conclude that the MB-SWIFT sequence is a robust preclinical brain mapping tool that can overcome many of the drawbacks of conventional EPI fMRI at high magnetic fields.

Original languageEnglish (US)
Article number116338
JournalNeuroImage
Volume206
DOIs
StatePublished - Feb 1 2020

Bibliographical note

Funding Information:
We thank Mikko Nissi, PhD, and Olli Nykänen, MSc, for technical assistance in the field map experiments. This work was supported by the National Institutes of Health ( U01-NS103569 and P41-EB015894 ); Academy of Finland ( #298007 ); and the Jane and Aatos Erkko Foundation . The authors have no conflicts of interest to disclose.

Publisher Copyright:
© 2019 The Authors

Keywords

  • Awake
  • Electroencephalography
  • Functional connectivity
  • Functional magnetic resonance imaging
  • Rats

Center for Magnetic Resonance Research (CMRR) tags

  • BFC
  • NFMC
  • P41

Fingerprint

Dive into the research topics of 'Multi-band SWIFT enables quiet and artefact-free EEG-fMRI and awake fMRI studies in rat'. Together they form a unique fingerprint.

Cite this