Moving the glycoprotein gene of vesicular stomatitis virus to promoter-proximal positions accelerates and enhances the protective immune response

E. B. Flanagan, L. A. Ball, G. W. Wertz

Research output: Contribution to journalArticlepeer-review

52 Scopus citations

Abstract

Vesicular stomatitis virus (VSV) is the prototype of the Rhabdoviridae and contains nonsegmented negative-sense RNA as its genome. The 11-kb genome encodes five genes in the order 3'-N-P-M-G-L-5', and transcription is obligatorily sequential from the single 3' promoter. As a result, genes at promoter-proximal positions are transcribed at higher levels than those at promoter-distal positions. Previous work demonstrated that moving the gene encoding the nucleocapsid protein N to successively more promoter-distal positions resulted in stepwise attenuation of replication and lethality for mice. In the present study we investigated whether moving the gene for the attachment glycoprotein G, which encodes the major neutralizing epitopes, from its fourth position up to first in the gene order would increase G protein expression in cells and alter the immune response in inoculated animals. In addition to moving the G gene alone, we also constructed viruses having both the G and N genes rearranged. This produced three variant viruses having the orders 3'-G-N-P-M-L-5' (G1N2), 3'-P-M-G-N-L-5' (G3N4), and 3'-G-P-M-N-L-5' (G1N4), respectively. These viruses differed from one another and from wild-type virus in their levels of gene expression and replication in cell culture. The viruses also differed in their pathogenesis, immunogenicity, and level of protection of mice against challenge with wild-type VSV. Translocation of the G gene altered the kinetics and level of the antibody response in mice, and simultaneous reduction of N protein expression reduced replication and lethality for animals. These studies demonstrate that gene rearrangement can be exploited to design nonsegmented negative-sense RNA viruses that have characteristics desirable in candidates for live attenuated vaccines.

Original languageEnglish (US)
Pages (from-to)7895-7902
Number of pages8
JournalJournal of virology
Volume74
Issue number17
DOIs
StatePublished - 2000

Fingerprint Dive into the research topics of 'Moving the glycoprotein gene of vesicular stomatitis virus to promoter-proximal positions accelerates and enhances the protective immune response'. Together they form a unique fingerprint.

Cite this