Abstract
Phenomenally strong visual illusions are described in which the motion of an object's cast shadow determines the perceived 3-D trajectory of the object. Simply adjusting the motion of a shadow is sufficient to induce dramatically different apparent trajectories of the object casting the shadow. Psychophysical results obtained with the use of 3-D graphics are reported which show that: (i) the information provided by the motion of an object's shadow overrides other strong sources of information and perceptual biases, such as the assumption of constant object size and a general viewpoint; (ii) the natural constraint of shadow darkness plays a role in the interpretation of a moving image patch as a shadow, but under some conditions even unnatural light shadows can induce apparent motion in depth of an object; (iii) when shadow motion is caused by a moving light source, the visual system incorrectly interprets the shadow motion as consistent with a moving object, rather than a moving light source. The results support the hypothesis that the human visual system incorporates a stationary light-source constraint in the perceptual processing of spatial layout of scenes.
Original language | English (US) |
---|---|
Pages (from-to) | 171-192 |
Number of pages | 22 |
Journal | Perception |
Volume | 26 |
Issue number | 2 |
DOIs | |
State | Published - 1997 |