TY - JOUR
T1 - Morphology and energetics of the molecular gas within a core and a diffuse region in the filamentary dark cloud GF 9
AU - Ciardi, David R.
AU - Woodward, Charles E.
AU - Clemens, Dan P.
AU - Harker, David E.
AU - Rudy, Richard J.
PY - 2000/7
Y1 - 2000/7
N2 - We have performed a CO, 13CO, and CS survey of a dense core region (GF 9-Core) and a diffuse filamentary region (GF 9-Fila) within the dark cloud GF 9 (LDN 1082). Spectra in each line were obtained toward 120 positions within each region covering areas of 8′ × 10′. GF 9-Core is associated with the Class 0 protostar IRAS PSC 20503+6006, while GF 9-Fila has no associated IRAS point sources. The median CO excitation temperature of the core region is 7.2 ± 0.5 K; for the filament region, the median temperature is 7.8 ± 0.5 K. The mass derived from the LTE isothermal analysis of 13CO is 53 ± 8 and 40 ± 6 M⊙ for GF 9-Core and GF 9-Fila, respectively. Using near-infrared extinction data to trace the H2 column density, the isothermal LTE assumptions for 13CO appear to break down at AV ≳ 3 mag. The near-infrared extinction data are used to correct the derived 13CO column densities, yielding mass estimates that are ∼20% larger than the LTE-derived masses. The average H2 volume densities for GF 9-Core and GF 9-Fila are ∼5000 ± 700 and ∼ 1700 ± 200 cm-3. Each region contains a 15 ± 3 M⊙ centrally condensed CS core, which is approximately 3 times more dense than the ambient 13CO regions. In GF 9-Core, the high-density gas core appears to be physically associated with the IRAS point source. Both high-density cores appear to be in virial equilibrium; however, the CS line widths in GF 9-Core are almost twice as large as those measured in GF 9-Fila. Because GF 9-Core is associated with the Class 0 protostar PSC 20503+6006, the CS line widths may be enhanced by outflow or infall motion. The additional nonturbulent line-broadening component caused by outflow/infall motion required to explain the line width implies a supersonic velocity of at least 0.3 km s-1 (Mach 1.5).
AB - We have performed a CO, 13CO, and CS survey of a dense core region (GF 9-Core) and a diffuse filamentary region (GF 9-Fila) within the dark cloud GF 9 (LDN 1082). Spectra in each line were obtained toward 120 positions within each region covering areas of 8′ × 10′. GF 9-Core is associated with the Class 0 protostar IRAS PSC 20503+6006, while GF 9-Fila has no associated IRAS point sources. The median CO excitation temperature of the core region is 7.2 ± 0.5 K; for the filament region, the median temperature is 7.8 ± 0.5 K. The mass derived from the LTE isothermal analysis of 13CO is 53 ± 8 and 40 ± 6 M⊙ for GF 9-Core and GF 9-Fila, respectively. Using near-infrared extinction data to trace the H2 column density, the isothermal LTE assumptions for 13CO appear to break down at AV ≳ 3 mag. The near-infrared extinction data are used to correct the derived 13CO column densities, yielding mass estimates that are ∼20% larger than the LTE-derived masses. The average H2 volume densities for GF 9-Core and GF 9-Fila are ∼5000 ± 700 and ∼ 1700 ± 200 cm-3. Each region contains a 15 ± 3 M⊙ centrally condensed CS core, which is approximately 3 times more dense than the ambient 13CO regions. In GF 9-Core, the high-density gas core appears to be physically associated with the IRAS point source. Both high-density cores appear to be in virial equilibrium; however, the CS line widths in GF 9-Core are almost twice as large as those measured in GF 9-Fila. Because GF 9-Core is associated with the Class 0 protostar PSC 20503+6006, the CS line widths may be enhanced by outflow or infall motion. The additional nonturbulent line-broadening component caused by outflow/infall motion required to explain the line width implies a supersonic velocity of at least 0.3 km s-1 (Mach 1.5).
KW - ISM: Abundances
KW - ISM: clouds
KW - ISM: individual (LDN 1082, GF 9)
KW - ISM: kinematics and dynamics
KW - Stars: formation
UR - http://www.scopus.com/inward/record.url?scp=0011791385&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0011791385&partnerID=8YFLogxK
U2 - 10.1086/301436
DO - 10.1086/301436
M3 - Article
AN - SCOPUS:0011791385
SN - 0004-6256
VL - 120
SP - 393
EP - 406
JO - Astronomical Journal
JF - Astronomical Journal
IS - 1
ER -