Monitor: An Expert System that Validates and Interprets Time-Dependent Partial Data Based on a Cystic Fibrosis Home Monitoring Program

James R. Slagle, Stanley M. Finkelstein, Laiwah A. Leung, Warren J. Warwick

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

The use of health diaries to monitor patients with chronic diseases has often been complicated by difficulties encountered in data quality assurance and interpretation. An expert system. Monitor, has been developed to predict the health status of cystic fibrosis patients based on daily home measurements of pulse, respiratory rate, weight, inspired vital capacity, and a check list of symptoms of acute illness. This system ensures data reliability beyond what can be achieved in most current automatic error detection procedures by validating inputs against patient-specific expectations. Its explicit representation of the time dimension and the hierarchical structure of its knowledge base facilitate the abstraction of trends and relationships among the time-dependent data. Dynamically imposed expectations also lend flexibility to the interpretation process by allowing the processing of partial (incomplete) data. Monitor correctly classified 86 percent (three-category classification) and 94 percent (two-category classification) of 111 cases. This demonstrates that expert systems can be a feasible approach in building more robust diary monitoring systems.

Original languageEnglish (US)
Pages (from-to)552-558
Number of pages7
JournalIEEE Transactions on Biomedical Engineering
Volume36
Issue number5
DOIs
StatePublished - May 1989

Bibliographical note

Funding Information:
Manuscript received July 28, 1988. This work was supported in part by the National Science Foundation under Grant DCR8512857, the Microelectronics and Information Sciences Center of the University of Minnesota, and NIH Grant HL27355 J. R. Slagle and L. A. Leung are with the Department of Computer Science, University of Minnesota, Minneapolis, MN 55455. S. M. Finklestein is with the Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455. W. J. Warwick is with the Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455. IEEE Log Number 8826027.

Fingerprint

Dive into the research topics of 'Monitor: An Expert System that Validates and Interprets Time-Dependent Partial Data Based on a Cystic Fibrosis Home Monitoring Program'. Together they form a unique fingerprint.

Cite this