Abstract
The use of health diaries to monitor patients with chronic diseases has often been complicated by difficulties encountered in data quality assurance and interpretation. An expert system. Monitor, has been developed to predict the health status of cystic fibrosis patients based on daily home measurements of pulse, respiratory rate, weight, inspired vital capacity, and a check list of symptoms of acute illness. This system ensures data reliability beyond what can be achieved in most current automatic error detection procedures by validating inputs against patient-specific expectations. Its explicit representation of the time dimension and the hierarchical structure of its knowledge base facilitate the abstraction of trends and relationships among the time-dependent data. Dynamically imposed expectations also lend flexibility to the interpretation process by allowing the processing of partial (incomplete) data. Monitor correctly classified 86 percent (three-category classification) and 94 percent (two-category classification) of 111 cases. This demonstrates that expert systems can be a feasible approach in building more robust diary monitoring systems.
Original language | English (US) |
---|---|
Pages (from-to) | 552-558 |
Number of pages | 7 |
Journal | IEEE Transactions on Biomedical Engineering |
Volume | 36 |
Issue number | 5 |
DOIs | |
State | Published - May 1989 |
Bibliographical note
Funding Information:Manuscript received July 28, 1988. This work was supported in part by the National Science Foundation under Grant DCR8512857, the Microelectronics and Information Sciences Center of the University of Minnesota, and NIH Grant HL27355 J. R. Slagle and L. A. Leung are with the Department of Computer Science, University of Minnesota, Minneapolis, MN 55455. S. M. Finklestein is with the Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455. W. J. Warwick is with the Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455. IEEE Log Number 8826027.