Abstract
The molecular geometries of VCl2 and VCl3 have been determined by computations and gas-phase electron diffraction (ED). The ED study is a reinvestigation of the previously published analysis for VCl2. The structure of the vanadium dichloride dimer has also been calculated. According to our joint ED and computational study, the evaporation of a solid sample of VCl2 resulted in about 66% vanadium dichloride and 34% vanadium dichloride in the vapor. Vanadium dichloride is unambiguously linear in its 4∑g+ ground electronic state. For VCl3, all computations yielded a Jahn-Tellerdistorted ground-state structure of C2v symmetry. However, it lies merely less than 3 kJ/mol lower than the 3E" state (D3h symmetry). Due to the dynamic nature of the Jahn-Teller effect in this case, rigorous distinction cannot be made between the planar models of either D3h symmetry or C2v symmetry for the equilibrium structure Of VCl3. Furthermore, the presence of several low-lying excited electronic states of VCl3 Is expected in the high-temperature vapor. To our knowledge, this is the first experimental and computational study of the VCl3 molecule.
Original language | English (US) |
---|---|
Pages (from-to) | 2816-2821 |
Number of pages | 6 |
Journal | Inorganic Chemistry |
Volume | 49 |
Issue number | 6 |
DOIs | |
State | Published - Mar 15 2010 |