Molecular dynamic simulation study of plasma etching L10 FePt media in embedded mask patterning (EMP) process

Jianxin Zhu, P. Quarterman, Jian Ping Wang

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


Plasma etching process of single-crystal L10-FePt media [H. Wang et al., Appl. Phys. Lett. 102(5) (2013)] is studied using molecular dynamic simulation. Embedded-Atom Method [M. S. Daw and M. I. Baskes, Phy. Rev. B 29, 6443 (1984); X. W. Zhou, R. A. Johnson and H. N. G. Wadley, Phy. Rev. B 69, 144113 (2004)] is used to calculate the interatomic potential within atoms in FePt alloy, and ZBL potential [J.F. Ziegler, J. P. Biersack and U. Littmark, “The Stopping and Range of Ions in Matter,” Volume 1, Pergamon,1985] in comparison with conventional Lennard-Jones “12-6” potential is applied to interactions between etching gas ions and metal atoms. It is shown the post-etch structure defects can include amorphized surface layer and lattice interstitial point defects that caused by etchant ions passed through the surface layer. We show that the amorphized or damaged FePt lattice surface layer (or “magnetic dead-layer”) thickness after etching increases with ion energy for Ar ion impacts, but significantly small for He ions at up to 250eV ion energy. However, we showed that He sputtering creates more interstitial defects at lower energy levels and defects are deeper below the surface compared to Ar sputtering. We also calculate the interstitial defect level and depth as dependence on ion energy for both Ar and He ions. Media magnetic property loss due to these defects is also discussed.

Original languageEnglish (US)
Article number056507
JournalAIP Advances
Issue number5
StatePublished - May 1 2017

Bibliographical note

Publisher Copyright:
© 2017 Author(s).


Dive into the research topics of 'Molecular dynamic simulation study of plasma etching L10 FePt media in embedded mask patterning (EMP) process'. Together they form a unique fingerprint.

Cite this