Abstract
The development of new technologies for mapping structural and functional brain connectivity has led to the creation of comprehensive network maps of neuronal circuits and systems. The architecture of these brain networks can be examined and analyzed with a large variety of graph theory tools. Methods for detecting modules, or network communities, are of particular interest because they uncover major building blocks or subnetworks that are particularly densely connected, often corresponding to specialized functional components. A large number of methods for community detection have become available and are now widely applied in network neuroscience. This article first surveys a number of these methods, with an emphasis on their advantages and shortcomings; then it summarizes major findings on the existence of modules in both structural and functional brain networks and briefly considers their potential functional roles in brain evolution, wiring minimization, and the emergence of functional specialization and complex dynamics.
Original language | English (US) |
---|---|
Pages (from-to) | 613-640 |
Number of pages | 28 |
Journal | Annual review of psychology |
Volume | 67 |
DOIs | |
State | Published - Jan 4 2016 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:Copyright © 2016 by Annual Reviews. All rights reserved.
Keywords
- Clustering
- Connectome
- Functional connectivity
- Graph theory
- Hubs
- Resting state