Modeling transmission dynamics and effectiveness of worker screening programs for SARS-CoV-2 in pork processing plants

Kimberly VanderWaal, Lora Black, Judy Hodge, Addisalem Bedada, Scott Dee

Research output: Contribution to journalArticlepeer-review

7 Scopus citations


Pork processing plants were apparent hotspots for SARS-CoV2 in the spring of 2020. As a result, the swine industry was confronted with a major occupational health, financial, and animal welfare crisis. The objective of this work was to describe the epidemiological situation within processing plants, develop mathematical models to simulate transmission in these plants, and test the effectiveness of routine PCR screening at minimizing SARS-CoV2 circulation. Cumulative incidence of clinical (PCR-confirmed) disease plateaued at ∼2.5% to 25% across the three plants studied here. For larger outbreaks, antibody prevalence was approximately 30% to 40%. Secondly, we developed a mathematical model that accounts for asymptomatic, pre-symptomatic, and background "community"transmission. By calibrating this model to observed epidemiological data, we estimated the initial reproduction number (R) of the virus. Across plants, R generally ranged between 2 and 4 during the initial phase, but subsequently declined to ∼1 after two to three weeks, most likely as a result of implementation/ compliance with biosecurity measures in combination with population immunity. Using the calibrated model to simulate a range of possible scenarios, we show that the effectiveness of routine PCR-screening at minimizing disease spread was far more influenced by testing frequency than by delays in results, R, or background community transmission rates. Testing every three days generally averted about 25% to 40% of clinical cases across a range of assumptions, while testing every 14 days typically averted 7 to 13% of clinical cases. However, the absolute number of additional clinical cases expected and averted was influenced by whether there was residual immunity from a previous peak (i.e., routine testing is implemented after the workforce had experienced an initial outbreak). In contrast, when using PCR-screening to prevent outbreaks or in the early stages of an outbreak, even frequent testing may not prevent a large outbreak within the workforce. This research helps to identify protocols that minimize risk to occupational safety and health and support continuity of business for U.S. processing plants. While the model was calibrated to meat processing plants, the structure of the model and insights about testing are generalizable to other settings where large number of people work in close proximity.

Original languageEnglish (US)
Article numbere0249143
JournalPloS one
Issue number9 September
StatePublished - Sep 2021

Bibliographical note

Publisher Copyright:
© 2021 VanderWaal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


  • Algorithms
  • Animals
  • Antibodies, Viral/immunology
  • COVID-19 Nucleic Acid Testing/methods
  • COVID-19/diagnosis
  • Food-Processing Industry
  • Humans
  • Mass Screening/methods
  • Models, Theoretical
  • Occupational Health/statistics & numerical data
  • Polymerase Chain Reaction/methods
  • Pork Meat
  • Reproducibility of Results
  • SARS-CoV-2/genetics
  • Sensitivity and Specificity
  • Swine

PubMed: MeSH publication types

  • Journal Article
  • Research Support, Non-U.S. Gov't


Dive into the research topics of 'Modeling transmission dynamics and effectiveness of worker screening programs for SARS-CoV-2 in pork processing plants'. Together they form a unique fingerprint.

Cite this