Abstract
High-spin oxoiron(IV) species are often implicated in the mechanisms of nonheme iron oxygenases, their C-H bond cleaving properties being attributed to the quintet spin state. However, the few available synthetic S = 2 FeIV=O complexes supported by polydentate ligands do not cleave strong C-H bonds. Herein we report the characterization of a highly reactive S = 2 complex, [FeIV(O)(TQA)(NCMe)]2+ (2) (TQA = tris(2-quinolylmethyl)amine), which oxidizes both C-H and C=C bonds at -40 °C. The oxidation of cyclohexane by 2 occurs at a rate comparable to that of the oxidation of taurine by the TauD-J enzyme intermediate after adjustment for the different temperatures of measurement. Moreover, compared with other S = 2 complexes characterized to date, the spectroscopic properties of 2 most closely resemble those of TauD-J. Together these features make 2 the best electronic and functional model for TauD-J to date.
Original language | English (US) |
---|---|
Pages (from-to) | 2428-2431 |
Number of pages | 4 |
Journal | Journal of the American Chemical Society |
Volume | 137 |
Issue number | 7 |
DOIs | |
State | Published - Feb 25 2015 |
Bibliographical note
Publisher Copyright:© 2015 American Chemical Society.