TY - GEN
T1 - Modeling of piston trajectory-based HCCI Combustion
AU - Zhang, Chen
AU - Li, Ke
AU - Sun, Zongxuan
PY - 2014/1/1
Y1 - 2014/1/1
N2 - Previously, the authors have designed and implemented an active motion control "virtual crankshaft" for a free piston engine, which enables precise piston tracking of desired trajectories. With this mechanism, the volume of the combustion chamber can be regulated, and therefore the pressure, temperature and species concentrations of in-cylinder gas can be adjusted in real-time which affect the combustion process directly. This new degree of freedom enables us to conduct trajectory-based combustion control. In this paper a model of the free piston engine running homogeneous charge compression ignition combustion under variant piston trajectories is presented. The variant piston trajectories have the ability to change the compression ratio and accommodate different piston motion patterns between the top dead center and the bottom dead center. The Lawrence Livermore National Laboratory reduced n-heptane reaction mechanism is employed in the model in order to describe the chemical kinetics under various piston trajectories. Analysis of the simulation results is then presented which reveals the piston trajectory effects on the combustion phenomena in terms of in-cylinder gas temperature trace, indicated output work, heat loss and radical species accumulation process.
AB - Previously, the authors have designed and implemented an active motion control "virtual crankshaft" for a free piston engine, which enables precise piston tracking of desired trajectories. With this mechanism, the volume of the combustion chamber can be regulated, and therefore the pressure, temperature and species concentrations of in-cylinder gas can be adjusted in real-time which affect the combustion process directly. This new degree of freedom enables us to conduct trajectory-based combustion control. In this paper a model of the free piston engine running homogeneous charge compression ignition combustion under variant piston trajectories is presented. The variant piston trajectories have the ability to change the compression ratio and accommodate different piston motion patterns between the top dead center and the bottom dead center. The Lawrence Livermore National Laboratory reduced n-heptane reaction mechanism is employed in the model in order to describe the chemical kinetics under various piston trajectories. Analysis of the simulation results is then presented which reveals the piston trajectory effects on the combustion phenomena in terms of in-cylinder gas temperature trace, indicated output work, heat loss and radical species accumulation process.
UR - http://www.scopus.com/inward/record.url?scp=84929237260&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84929237260&partnerID=8YFLogxK
U2 - 10.1115/DSCC2014-6256
DO - 10.1115/DSCC2014-6256
M3 - Conference contribution
AN - SCOPUS:84929237260
T3 - ASME 2014 Dynamic Systems and Control Conference, DSCC 2014
BT - Dynamic Modeling and Diagnostics in Biomedical Systems; Dynamics and Control of Wind Energy Systems; Vehicle Energy Management Optimization; Energy Storage, Optimization; Transportation and Grid Applications; Estimation and Identification Methods, Tracking, Detection, Alternative Propulsion Systems; Ground and Space Vehicle Dynamics; Intelligent Transportation Systems and Control; Energy Harvesting; Modeling and Control for Thermo-Fluid Applications, IC Engines, Manufacturing
PB - American Society of Mechanical Engineers
T2 - ASME 2014 Dynamic Systems and Control Conference, DSCC 2014
Y2 - 22 October 2014 through 24 October 2014
ER -