Abstract
Given massive data that may be time dependent and multi-dimensional, how to efficiently explore the underlying functional relationships across different dimensions and time lags? In this work, we propose a methodology to sequentially and adaptively model nonlinear multivariate time series data. Data at each time step and dimension is modeled as a nonlinear function of past values corrupted by noise, and the underlying nonlinear function is assumed to be approximately expandable in a spline basis. We cast the modeling of data as finding a good fit representation in the linear span of multi-dimensional spline basis, and use a variant of h-penalty regularization in order to reduce the dimensionality of representation. Using adaptive filtering techniques, we design our online algorithm to automatically tune the underlying parameters based on the minimization of the regularized sequential prediction error. We demonstrate the generality and flexibility of the proposed approach on both synthetic and real-world datasets. Moreover, we analytically investigate the performance of our algorithm by obtaining bounds of the prediction errors.
Original language | English (US) |
---|---|
Title of host publication | 2017 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2017 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 206-210 |
Number of pages | 5 |
ISBN (Electronic) | 9781509059904 |
DOIs | |
State | Published - Mar 7 2018 |
Event | 5th IEEE Global Conference on Signal and Information Processing, GlobalSIP 2017 - Montreal, Canada Duration: Nov 14 2017 → Nov 16 2017 |
Publication series
Name | 2017 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2017 - Proceedings |
---|---|
Volume | 2018-January |
Other
Other | 5th IEEE Global Conference on Signal and Information Processing, GlobalSIP 2017 |
---|---|
Country/Territory | Canada |
City | Montreal |
Period | 11/14/17 → 11/16/17 |
Bibliographical note
Funding Information:This work is supported by Defense Advanced Research Projects Agency (DARPA) grant numbers W911NF-14-1-0508 and N66001-15-C-4028.
Publisher Copyright:
© 2017 IEEE.
Keywords
- Adaptive Filtering
- Group LASSO
- Non-linear Models
- Spline Regression
- Time Series