TY - JOUR
T1 - Modeling marine protected areas for threatened eiders in a climatically changing Bering Sea
AU - Lovvorn, James R.
AU - Grebmeier, Jacqueline M.
AU - Cooper, Lee W.
AU - Bump, Joseph K.
AU - Richman, Samantha E.
PY - 2009/9
Y1 - 2009/9
N2 - Delineating protected areas for sensitive species is a growing challenge as changing climate alters the geographic pattern of habitats as well as human responses to those shifts. When human impacts are expected within projected ranges of threatened species, there is often demand to demarcate the minimum habitat required to ensure the species' persistence. Because diminished or wide-ranging populations may not occupy all viable (and needed) habitat at once, one must identify thresholds of resources that will support the species even in unoccupied areas. Long-term data on the shifting mosaic of critical resources may indicate ranges of future variability. We addressed these issues for the Spectacled Eider (Somateria fischeri), a federally threatened species that winters in pack ice of the Bering Sea. Changing climate has decreased ice cover and severely reduced the eiders' benthic prey and has increased prospects for expansion of bottom trawling that may further affect prey communities. To assess long-term changes in habitats that will support eiders, we linked data on benthic prey, sea ice, and weather from 1970 to 2001 with a spatially explicit simulation model of eider energy balance that integrated field, laboratory, and remote-sensing studies. Areas estimated to have prey densities adequate for eiders in 1970-1974 did not include most areas that were viable 20 years later (1993-1994). Unless the entire area with adequate prey in 1993-1994 had been protected, the much reduced viable area in 1999-2001 might well have been excluded. During long non-foraging periods (as at night), eiders can save much energy by resting on ice vs. floating on water; thus, loss of ice cover in the future might substantially decrease the area in which prey densities are adequate to offset the eiders' energy needs. For wide-ranging benthivores such as eiders, our results emphasize that fixed protected areas based on current conditions can be too small or inflexible to subsume long-term shifts in habitat conditions. Better knowledge of patterns of natural disturbance experienced by prey communities, and appropriate allocation of human disturbance over seasons or years, may yield alternative strategies to large-scale closures that may be politically and economically problematic.
AB - Delineating protected areas for sensitive species is a growing challenge as changing climate alters the geographic pattern of habitats as well as human responses to those shifts. When human impacts are expected within projected ranges of threatened species, there is often demand to demarcate the minimum habitat required to ensure the species' persistence. Because diminished or wide-ranging populations may not occupy all viable (and needed) habitat at once, one must identify thresholds of resources that will support the species even in unoccupied areas. Long-term data on the shifting mosaic of critical resources may indicate ranges of future variability. We addressed these issues for the Spectacled Eider (Somateria fischeri), a federally threatened species that winters in pack ice of the Bering Sea. Changing climate has decreased ice cover and severely reduced the eiders' benthic prey and has increased prospects for expansion of bottom trawling that may further affect prey communities. To assess long-term changes in habitats that will support eiders, we linked data on benthic prey, sea ice, and weather from 1970 to 2001 with a spatially explicit simulation model of eider energy balance that integrated field, laboratory, and remote-sensing studies. Areas estimated to have prey densities adequate for eiders in 1970-1974 did not include most areas that were viable 20 years later (1993-1994). Unless the entire area with adequate prey in 1993-1994 had been protected, the much reduced viable area in 1999-2001 might well have been excluded. During long non-foraging periods (as at night), eiders can save much energy by resting on ice vs. floating on water; thus, loss of ice cover in the future might substantially decrease the area in which prey densities are adequate to offset the eiders' energy needs. For wide-ranging benthivores such as eiders, our results emphasize that fixed protected areas based on current conditions can be too small or inflexible to subsume long-term shifts in habitat conditions. Better knowledge of patterns of natural disturbance experienced by prey communities, and appropriate allocation of human disturbance over seasons or years, may yield alternative strategies to large-scale closures that may be politically and economically problematic.
KW - Climate change
KW - Endangered species act
KW - Energetics models
KW - Individual-based models
KW - Macoma calcarea
KW - Marine reserves
KW - Nuculana radiata
KW - Sea-ice effects on birds
KW - Somateria fischeri
KW - Spatial foraging models
KW - Spectacled eider
KW - Trawling effects
UR - http://www.scopus.com/inward/record.url?scp=69449090373&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=69449090373&partnerID=8YFLogxK
U2 - 10.1890/08-1193.1
DO - 10.1890/08-1193.1
M3 - Article
C2 - 19769106
AN - SCOPUS:69449090373
SN - 1051-0761
VL - 19
SP - 1596
EP - 1613
JO - Ecological Applications
JF - Ecological Applications
IS - 6
ER -