Modeling hydrogen induced damage mechanisms in metals

W. Gerberich

Research output: Chapter in Book/Report/Conference proceedingChapter

58 Scopus citations


Historically, there have been a half-dozen hydrogen induced degradation models proposed. A few of these have since been rejected but the remaining ones can be categorized into two. For the first general category, hydrogen enhanced decohesion (HEDE) has been promoted as hydrogen lowering the forces required for atom separation reducing the brittle fracture stress. As to the second general category, this has been identified with hydrogen enhanced localized plasticity (HELP). Here, hydrogen lowers the forces required to localize dislocation plasticity thereby reducing shear stresses for ductile fracture. The following review points out general features of each with the historical development of both experimental and theoretical milestones in each decade from the 1950s or 1960s to the present day.

Original languageEnglish (US)
Title of host publicationGaseous Hydrogen Embrittlement of Materials in Energy Technologies
Subtitle of host publicationMechanisms, Modelling and Future Developments
PublisherElsevier Inc.
Number of pages38
ISBN (Print)9780857095367
StatePublished - Jan 2012

Bibliographical note

Funding Information:
This work was supported by the NSF/DMR 0946337, the Air Force Office of Scientific Research A0ARD-08-4134, and the Abu Dhabi-Minnesota Institute for Research Excellence, a partnership with the Petroleum Institiute.


  • Decohesion
  • Decohesion modeling
  • Enhanced plasticity
  • Enhanced plasticity modeling
  • Hydrogen enhanced decohesion (HEDE)
  • Hydrogen enhanced localized plasticity (HELP)
  • Mechanism milestones


Dive into the research topics of 'Modeling hydrogen induced damage mechanisms in metals'. Together they form a unique fingerprint.

Cite this