Abstract
Three flutter-suppression designs for a flexible flying-wing research drone are discussed, along with the modeling and flight-test results. The drone, with wing span of 10 feet, aspect ratio of almost 9, and control surfaces along the entire wing trailing edges, was developed for flight research into the modeling and control of highly elastic aircraft. The lowspeed vehicle was designed to exhibit body-freedom flutter in its flight envelope. The all-important dynamic modeling of the vehicle, used for analysis and control design, is based on a mean-axis formulation and quasi-steady aerodynamics, with the nondimensional aerodynamic/aeroelastic coefficients updated from flight tests. Flutter-modeling results were found to agree with those from NASTRAN and flight tests. The three different flutter-suppression approaches include both fairly classical and multivariable methods, all fixed gains but with different architectures. The primary controldesign objective was to augment the damping of the eventual flutter mode at a design condition below the open-loop flutter speed, for safety of flight, and to achieve a closed-loop flutter speed at least as high as the open-loop flutter speed. Analysis and flight tests revealed that all three designs achieved these design goals. In addition, two of these designs actually expanded the flutter boundary. The theoretical stability robustness of all three controllers at the design flight condition is quite good, but there are differences in controller complexity. Research is currently underway to further expand the flutter boundary using all three design approaches.
Original language | English (US) |
---|---|
Pages (from-to) | 615-634 |
Number of pages | 20 |
Journal | Journal of Aircraft |
Volume | 57 |
Issue number | 4 |
DOIs | |
State | Published - 2020 |
Bibliographical note
Publisher Copyright:© 2020 by David K. Schmidt, Brian P. Danowsky, Aditya Kotikalpudi, Julian Theis, Christopher D. Regan, Peter J. Seiler, and Rakesh K. Kapania.