TY - JOUR
T1 - Modeling and Experimental Validation of a Reed Check Valve for Hydraulic Applications
AU - Knutson, Anthony L.
AU - Van De Ven, James D.
N1 - Publisher Copyright:
© 2020 by ASME.
PY - 2020/11/1
Y1 - 2020/11/1
N2 - Reed valves are a type of check valve commonly found in a wide range of applications including air compressors, internal combustion engines, musical instruments, and even the human heart. While reed valves have been studied extensively in these applications, published research on the modeling and application of reed valves in hydraulic systems is sparse. Because the spring and mass components of a reed valve are contained in a single element, it is light and compact compared to traditional disk, poppet, or ball style check valves. These advantages make reed valves promising for use in high-frequency applications such as piston pumps, switch-mode hydraulics, and digital hydraulics. Furthermore, the small size and fast response of reed valves provide an opportunity to design pumps capable of operating at higher speeds and with lower dead volumes, thus increasing efficiency and power density. In this paper, a modeling technique for reed valves is presented and validated in a hydraulic piston pump test bed. Excellent agreement between modeled and experimentally measured reed valve opening is demonstrated. Across the range of experimental conditions, the model predicts the pump delivery with an error typically less than 1% with a maximum error of 2.2%.
AB - Reed valves are a type of check valve commonly found in a wide range of applications including air compressors, internal combustion engines, musical instruments, and even the human heart. While reed valves have been studied extensively in these applications, published research on the modeling and application of reed valves in hydraulic systems is sparse. Because the spring and mass components of a reed valve are contained in a single element, it is light and compact compared to traditional disk, poppet, or ball style check valves. These advantages make reed valves promising for use in high-frequency applications such as piston pumps, switch-mode hydraulics, and digital hydraulics. Furthermore, the small size and fast response of reed valves provide an opportunity to design pumps capable of operating at higher speeds and with lower dead volumes, thus increasing efficiency and power density. In this paper, a modeling technique for reed valves is presented and validated in a hydraulic piston pump test bed. Excellent agreement between modeled and experimentally measured reed valve opening is demonstrated. Across the range of experimental conditions, the model predicts the pump delivery with an error typically less than 1% with a maximum error of 2.2%.
UR - http://www.scopus.com/inward/record.url?scp=85088210659&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85088210659&partnerID=8YFLogxK
U2 - 10.1115/1.4047450
DO - 10.1115/1.4047450
M3 - Article
AN - SCOPUS:85088210659
SN - 0022-0434
VL - 142
JO - Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME
JF - Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME
IS - 11
M1 - 111001
ER -