Abstract
A hydraulic hybrid powertrain for passenger vehicle is studied in this paper. The hydraulic hybrid powertrain consists of a hydro-mechanical transmission and a hydraulic accumulator. The key component of this hydro-mechanical transmission is a pressure-controlled hydraulic transmission. It combines pumping and motoring function in one unit and is potentially more competitive in terms of both energy efficiency and cost effectiveness than a conventional hydrostatic transmission. By feeding the output flow of the pressure-controlled hydraulic transmission to a variable displacement motor coupled to the transmission output shaft, a more compact and simpler hydro-mechanical transmission is constituted. In this paper the systematic approach of applying the hydraulic hybrid powertrain to a passenger vehicle is studied. A dynamic simulation model is developed in Simulink and the U.S. EPA’s urban cycle is used as the test driving cycle. A rule-based energy management strategy (EMS) for the hydraulic hybrid powertrain has also been developed. The system parameter design, controller design and the energy management strategy are evaluated through simulation.
Original language | English (US) |
---|---|
Title of host publication | ASME/BATH 2017 Symposium on Fluid Power and Motion Control, FPMC 2017 |
Publisher | American Society of Mechanical Engineers |
ISBN (Electronic) | 9780791858332 |
DOIs | |
State | Published - 2017 |
Event | ASME/BATH 2017 Symposium on Fluid Power and Motion Control, FPMC 2017 - Sarasota, United States Duration: Oct 16 2017 → Oct 19 2017 |
Publication series
Name | ASME/BATH 2017 Symposium on Fluid Power and Motion Control, FPMC 2017 |
---|
Other
Other | ASME/BATH 2017 Symposium on Fluid Power and Motion Control, FPMC 2017 |
---|---|
Country/Territory | United States |
City | Sarasota |
Period | 10/16/17 → 10/19/17 |
Bibliographical note
Publisher Copyright:Copyright © 2017 ASME