Modeling, analysis, and optimal design of the automotive transmission ball capsule system

Xingyong Song, Mohd Azrin Mohd Zulkefli, Zongxuan Sun, Hsu Chiang Miao

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Clutch shift control is critical for the performance and fuel economy of automotive transmission, including both automatic and hybrid transmissions. Among all the factors that influence clutch shift control, clutch fill and clutch engagement are crucial to realize a fast and smooth clutch shift. When the clutch is not engaged, the fluid held by the centrifugal force inside of the clutch chamber, which introduces additional pressure that will affect the subsequent clutch fill and engagement processes, should be released. To realize this function, a ball capsule system is introduced and mounted on the clutch chamber. When the clutch is ready to be filled for engagement, the ball capsule needs to close quickly and remain closed until the clutch is disengaged. It's also desirable to have appropriate closing velocity for the ball capsule to minimize noise and wear. In this paper, we will model the ball capsule dynamics and reveal its intrinsic positive feedback structure, which is considered to be the key to realize a fast response, and design the optimal shape of the capsule to achieve the desired performance.

Original languageEnglish (US)
Title of host publication2009 American Control Conference, ACC 2009
Pages1379-1384
Number of pages6
DOIs
StatePublished - 2009
Event2009 American Control Conference, ACC 2009 - St. Louis, MO, United States
Duration: Jun 10 2009Jun 12 2009

Publication series

NameProceedings of the American Control Conference
ISSN (Print)0743-1619

Other

Other2009 American Control Conference, ACC 2009
Country/TerritoryUnited States
CitySt. Louis, MO
Period6/10/096/12/09

Fingerprint

Dive into the research topics of 'Modeling, analysis, and optimal design of the automotive transmission ball capsule system'. Together they form a unique fingerprint.

Cite this