Modeled sensitivity of Lake Michigan productivity and zooplankton to changing nutrient concentrations and quagga mussels

Darren J. Pilcher, Galen A. McKinley, James Kralj, Harvey A. Bootsma, Euan D. Reavie

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

The recent decline in Lake Michigan productivity is often attributed to filter feeding by invasive quagga mussels, but some studies also implicate reductions in lakewide nutrient concentrations. We use a 3-D coupled hydrodynamic-biogeochemical model to evaluate the effect of changing nutrient concentrations and quagga mussel filtering on phytoplankton production and phytoplankton and zooplankton biomass. Sensitivity experiments are used to assess the net effect of each change separately and in unison. Quagga mussels are found to have the greatest impact during periods of isothermal mixing, while nutrients have the greatest impact during thermal stratification. Quagga mussels also act to enhance spatial heterogeneity, particularly between nearshore-offshore regions. This effect produces a reversal in the gradient of nearshore-offshore productivity: from relatively greater nearshore productivity in the prequagga lake to relatively lesser nearshore productivity after quaggas. The combined impact of both processes drives substantial reductions in phytoplankton and zooplankton biomass, as well as significant modifications to the seasonality of surface water pCO2, particularly in nearshore regions where mussel grazing continues year-round. These results support growing concern that considerable losses of phytoplankton and zooplankton will yield concurrent losses at higher trophic levels. Comparisons to observed productivity suggest that both quagga mussel filtration and lower lakewide total phosphorus are necessary to accurately simulate recent changes in primary productivity in Lake Michigan.

Original languageEnglish (US)
Pages (from-to)2017-2032
Number of pages16
JournalJournal of Geophysical Research: Biogeosciences
Volume122
Issue number8
DOIs
StatePublished - Aug 2017

Bibliographical note

Publisher Copyright:
©2017. American Geophysical Union. All Rights Reserved.

Keywords

  • Dreissena
  • Great Lakes
  • biogeochemical modeling
  • large lakes
  • nutrient cycling

Fingerprint

Dive into the research topics of 'Modeled sensitivity of Lake Michigan productivity and zooplankton to changing nutrient concentrations and quagga mussels'. Together they form a unique fingerprint.

Cite this