Abstract
Current lower-limb prosthesis control methods are primarily model-independent - lacking formal guarantees of stability, relying largely on heuristic tuning parameters for good performance, and neglecting use of the natural dynamics of the system. Model-dependence for prosthesis controllers is difficult to achieve due to the unknown human dynamics. We build upon previous work which synthesized provably stable prosthesis walking through the use of rapidly exponentially stabilizing control Lyapunov functions (RES-CLFs). This paper utilizes RES-CLFs together with force estimation to construct model-based optimization-based controllers for the prosthesis. These are experimentally realized on hardware with onboard sensing and computation. This hardware demonstration has formal guarantees of stability, utilizes the natural dynamics of the system, and achieves superior tracking to other prosthesis trajectory tracking control methods.
Original language | English (US) |
---|---|
Title of host publication | 2021 IEEE International Conference on Robotics and Automation, ICRA 2021 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 3226-3232 |
Number of pages | 7 |
ISBN (Electronic) | 9781728190778 |
DOIs | |
State | Published - 2021 |
Externally published | Yes |
Event | 2021 IEEE International Conference on Robotics and Automation, ICRA 2021 - Xi'an, China Duration: May 30 2021 → Jun 5 2021 |
Publication series
Name | Proceedings - IEEE International Conference on Robotics and Automation |
---|---|
Volume | 2021-May |
ISSN (Print) | 1050-4729 |
Conference
Conference | 2021 IEEE International Conference on Robotics and Automation, ICRA 2021 |
---|---|
Country/Territory | China |
City | Xi'an |
Period | 5/30/21 → 6/5/21 |
Bibliographical note
Publisher Copyright:© 2021 IEEE