Symposium overview: Mitochondria-mediated cell injury

K. B. Wallace, J. T. Eells, V. M C Madeira, G. Cortopassi, D. P. Jones

Research output: Contribution to journalArticlepeer-review

145 Scopus citations


Mitochondria have long been known to participate in the process of cell injury associated with metabolic failure. Only recently, however, have we come to appreciate the role of mitochondria as primary intracellular targets in the initiation of cell dysfunction. In addition to ATP synthesis, mitochondria are also critical to modulation of cell redox status, osmotic regulation, pH control, and cytosolic calcium homeostasis and cell signaling. Mitochondria are susceptible to damage by oxidants, electrophiles, and lipophilic cations and weak acids. Chemical-induced mitochondrial dysfunction may be manifested as diverse bioenergetic disorders and considerable effort is required to distinguish between mechanisms involving critical mitochondrial targets and those in which mitochondrial dysfunction is secondary and plays only a modulatory role in cell injury. The following paragraphs review a few important examples of chemical-induced cytotoxic responses that are manifested as interference with mitochondrial metabolism and bioenergetics, gene regulation, or signal transduction in the form of apoptosis and altered cell cycle control. Greater understanding of the molecular mechanisms of mitochondrial bioenergetics, ion regulation, and genetics will lead to numerous additional examples of mitochondria-mediated cell injury, revealing important new insight regarding the prediction, prevention, diagnosis, and treatment of chemical-induced toxic tissue injury.

Original languageEnglish (US)
Pages (from-to)23-37
Number of pages15
JournalToxicological Sciences
Issue number1
StatePublished - 1997

PubMed: MeSH publication types

  • Congress


Dive into the research topics of 'Symposium overview: Mitochondria-mediated cell injury'. Together they form a unique fingerprint.

Cite this