TY - JOUR
T1 - Microwave and Computational Study of Pivalic Sulfuric Anhydride and the Pivalic Acid Monomer
T2 - Mechanistic Insights into the RCOOH + SO3Reaction
AU - Love, Nathan
AU - Carpenter, Casey A.
AU - Huff, Anna K.
AU - Douglas, Christopher J.
AU - Leopold, Kenneth R.
N1 - Publisher Copyright:
© 2022 American Chemical Society.
PY - 2022/9/15
Y1 - 2022/9/15
N2 - The microwave spectrum of pivalic sulfuric anhydride, (CH3)3CCOOSO2OH (PivSA), has been observed by rotational spectroscopy. The compound was formed by the reaction of SO3 with (CH3)3CCOOH (pivalic acid) in a supersonic jet in a manner analogous to that previously observed with other carboxylic acids. Computational analysis indicates that the reaction is best described as a pericyclic process coupled with a 60° rotation of the t-butyl group. Product formation can occur through either a sequential (two-step) or a concerted (one-step) pathway. The former involves an internal rotation of the t-butyl group through a 0.11 kcal/mol barrier followed by the pericyclic reaction that joins the moieties. The latter passes through a second-order saddle point in which the internal rotation and pericyclic reaction occur simultaneously. This path is the most energetically favorable, as the zero-point corrected energy at the saddle point structure is 0.16 kcal/mol below that of a putative (CH3)3CCOOH-SO3 precursor complex. Additional computational work involving a series of carboxylic acids is reported, which explores the effects of gas-phase acidity and basicity of the RCOOH reactant on reaction energetics. These calculations, together with prior experimental and theoretical studies of the acetic and trifluoroacetic derivatives, demonstrate that the basicity of the carbonyl oxygen, not the acidity of the COOH proton, is the important driving factor for the reaction. As a precursor to the experimental work on the title molecule, microwave spectra of the parent and OD forms of the pivalic acid monomer were recorded and are reported here as well. A convenient synthesis of SO3 is also described.
AB - The microwave spectrum of pivalic sulfuric anhydride, (CH3)3CCOOSO2OH (PivSA), has been observed by rotational spectroscopy. The compound was formed by the reaction of SO3 with (CH3)3CCOOH (pivalic acid) in a supersonic jet in a manner analogous to that previously observed with other carboxylic acids. Computational analysis indicates that the reaction is best described as a pericyclic process coupled with a 60° rotation of the t-butyl group. Product formation can occur through either a sequential (two-step) or a concerted (one-step) pathway. The former involves an internal rotation of the t-butyl group through a 0.11 kcal/mol barrier followed by the pericyclic reaction that joins the moieties. The latter passes through a second-order saddle point in which the internal rotation and pericyclic reaction occur simultaneously. This path is the most energetically favorable, as the zero-point corrected energy at the saddle point structure is 0.16 kcal/mol below that of a putative (CH3)3CCOOH-SO3 precursor complex. Additional computational work involving a series of carboxylic acids is reported, which explores the effects of gas-phase acidity and basicity of the RCOOH reactant on reaction energetics. These calculations, together with prior experimental and theoretical studies of the acetic and trifluoroacetic derivatives, demonstrate that the basicity of the carbonyl oxygen, not the acidity of the COOH proton, is the important driving factor for the reaction. As a precursor to the experimental work on the title molecule, microwave spectra of the parent and OD forms of the pivalic acid monomer were recorded and are reported here as well. A convenient synthesis of SO3 is also described.
UR - http://www.scopus.com/inward/record.url?scp=85138445827&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85138445827&partnerID=8YFLogxK
U2 - 10.1021/acs.jpca.2c04904
DO - 10.1021/acs.jpca.2c04904
M3 - Article
C2 - 36067456
AN - SCOPUS:85138445827
SN - 1089-5639
VL - 126
SP - 6194
EP - 6202
JO - Journal of Physical Chemistry A
JF - Journal of Physical Chemistry A
IS - 36
ER -