Microphase separation mode-dependent mechanical response in poly(vinyl ester)/PEO triblock copolymers

Corinne E. Lipscomb, Mahesh K. Mahanthappa

Research output: Contribution to journalArticle

11 Scopus citations

Abstract

The morphology and mechanical properties of a series of poly(vinyl ester)/poly(ethylene oxide) triblock copolymers are reported. Reversible addition-fragmentation chain transfer (RAFT) polymerizations of vinyl ester monomers mediated by an α,ω-telechelic poly(ethylene oxide) bearing terminal xanthate functionalities enable the bidirectional syntheses of monodisperse POP, AOA, and BOB (P = poly(vinyl pivalate); A = poly(vinyl acetate); B = poly(vinyl benzoate); O = poly(ethylene oxide)) triblock copolymers. By controlling the extent of monomer conversion in these RAFT polymerizations using a single difunctional macro-RAFT chain transfer agent having Mn,O = 11.3 kg/mol, a series of polymers having O mass fractions 0.25 ≥ wO ≥ 1.00 and Mn,total = 14.9-45.1 kg/mol (Mw/Mn < 1.40) were synthesized. Through a combination of differential scanning calorimetry (DSC) and variable-temperature small-angle X-ray scattering (SAXS) analyses, the three triblock series are shown to exhibit three different solid-state morphologies that arise directly from (i) O crystallization from a microphase-separated melt, (ii) O crystallization-induced segregation, and (iii) complete suppression of O crystallization. The mechanical properties of these materials are correlated with the observed mode of microphase separation.

Original languageEnglish (US)
Pages (from-to)4401-4409
Number of pages9
JournalMacromolecules
Volume44
Issue number11
DOIs
StatePublished - Jun 14 2011

Fingerprint Dive into the research topics of 'Microphase separation mode-dependent mechanical response in poly(vinyl ester)/PEO triblock copolymers'. Together they form a unique fingerprint.

  • Cite this