Microbial Distribution and Abundance in the Digestive System of Five Shipworm Species (Bivalvia: Teredinidae)

Meghan A. Betcher, Jennifer M. Fung, Andrew W. Han, Roberta O'Connor, Romell Seronay, Gisela P. Concepcion, Daniel L. Distel, Margo G. Haygood

Research output: Contribution to journalArticlepeer-review

45 Scopus citations

Abstract

Marine bivalves of the family Teredinidae (shipworms) are voracious consumers of wood in marine environments. In several shipworm species, dense communities of intracellular bacterial endosymbionts have been observed within specialized cells (bacteriocytes) of the gills (ctenidia). These bacteria are proposed to contribute to digestion of wood by the host. While the microbes of shipworm gills have been studied extensively in several species, the abundance and distribution of microbes in the digestive system have not been adequately addressed. Here we use Fluorescence In-Situ Hybridization (FISH) and laser scanning confocal microscopy with 16S rRNA directed oligonucleotide probes targeting all domains, domains Bacteria and Archaea, and other taxonomic groups to examine the digestive microbiota of 17 specimens from 5 shipworm species (Bankia setacea, Lyrodus pedicellatus, Lyrodus massa, Lyrodus sp. and Teredo aff. triangularis). These data reveal that the caecum, a large sac-like appendage of the stomach that typically contains large quantities of wood particles and is considered the primary site of wood digestion, harbors only very sparse microbial populations. However, a significant number of bacterial cells were observed in fecal pellets within the intestines. These results suggest that due to low abundance, bacteria in the caecum may contribute little to lignocellulose degradation. In contrast, the comparatively high population density of bacteria in the intestine suggests a possible role for intestinal bacteria in the degradation of lignocellulose.

Original languageEnglish (US)
Article numbere45309
JournalPloS one
Volume7
Issue number9
DOIs
StatePublished - Sep 20 2012
Externally publishedYes

Fingerprint

Dive into the research topics of 'Microbial Distribution and Abundance in the Digestive System of Five Shipworm Species (Bivalvia: Teredinidae)'. Together they form a unique fingerprint.

Cite this