Microbial biodegradation of biuret: defining biuret hydrolases within the isochorismatase superfamily

Serina L. Robinson, Jonathan P. Badalamenti, Anthony G. Dodge, Lambros J. Tassoulas, Lawrence P. Wackett

Research output: Contribution to journalArticle

3 Scopus citations

Abstract

Biuret is a minor component of urea fertilizer and an intermediate in s-triazine herbicide biodegradation. The microbial metabolism of biuret has never been comprehensively studied. Here, we enriched and isolated bacteria from a potato field that grew on biuret as a sole nitrogen source. We sequenced the genome of the fastest-growing isolate, Herbaspirillum sp. BH-1 and identified genes encoding putative biuret hydrolases (BHs). We purified and characterized a functional BH enzyme from Herbaspirillum sp. BH-1 and two other bacteria from divergent phyla. The BH enzymes reacted exclusively with biuret in the range of 2-11 µmol min−1 mg−1 protein. We then constructed a global protein superfamily network to map structure-function relationships in the BH subfamily and used this to mine > 7000 genomes. High-confidence BH sequences were detected in Actinobacteria, Alpha- and Beta-proteobacteria, and some fungi, archaea and green algae, but not animals or land plants. Unexpectedly, no cyanuric acid hydrolase homologs were detected in > 90% of genomes with BH homologs, suggesting BHs may have arisen independently of s-triazine ring metabolism. This work links genotype to phenotype by enabling accurate genome-mining to predict microbial utilization of biuret. Importantly, it advances understanding of the microbial capacity for biuret biodegradation in agricultural systems.

Original languageEnglish (US)
Pages (from-to)2099-2111
Number of pages13
JournalEnvironmental microbiology
Volume20
Issue number6
DOIs
StatePublished - Jun 2018

    Fingerprint

Cite this