TY - JOUR
T1 - Methylation of the DPYD promoter
T2 - An alternative mechanism for dihydropyrimidine dehydrogenase deficiency in cancer patients
AU - Ezzeldin, Hany H.
AU - Lee, Adam M.
AU - Mattison, Lori K.
AU - Diasio, Robert B.
PY - 2005/12/15
Y1 - 2005/12/15
N2 - Purpose: Dihydropyrimidine dehydrogenase (DPD) deficiency, a known pharmacogenetic syndrome associated with 5-fluorouracil (5-FU) toxicity, has been detected in 3% to 5% of the population. Genotypic studies have identified >32 sequence variants in the DPYD gene; however, in a number of cases, sequence variants could not explain the molecular basis of DPD deficiency. Recent studies in cell lines indicate that hypermethylation of the DPYD promoter might down-regulate DPD expression. The current study investigates the role of methylation in cancer patients with an unexplained molecular basis of DPD deficiency. Experimental Design: DPD deficiency was identified phenotypically by both enzyme assay and uracil breath test, and genotypically by denaturing high-performance liquid chromatography. The methylation status was evaluated in PCR products (209 bp) of bisulfite-modified DPYD promoter, using a novel denaturing high-performance liquid chromatography method that distinguishes between methylated and unmethylated alleles. Clinical samples included five volunteers with normal DPD enzyme activity, five DPD-deficient volunteers, and five DPD-deficient cancer patients with a history of 5-FU toxicity. Results: No evidence of methylation was detected in samples from volunteers with normal DPD. Methylation was detected in five of five DPD-deficient volunteers and in three of five of the DPD-deficient cancer patient samples. Of note, one of the two samples from patients with DPD-deficient cancer with no evidence of methylation had the mutation DPYD*2A, whereas the other had DPYD*13. Discussion: Methylation of the DPYD promoter region is associated with down-regulation of DPD activity in clinical samples and should be considered as a potentially important regulatory mechanism of DPD activity and basis for 5-FU toxicity in cancer patients.
AB - Purpose: Dihydropyrimidine dehydrogenase (DPD) deficiency, a known pharmacogenetic syndrome associated with 5-fluorouracil (5-FU) toxicity, has been detected in 3% to 5% of the population. Genotypic studies have identified >32 sequence variants in the DPYD gene; however, in a number of cases, sequence variants could not explain the molecular basis of DPD deficiency. Recent studies in cell lines indicate that hypermethylation of the DPYD promoter might down-regulate DPD expression. The current study investigates the role of methylation in cancer patients with an unexplained molecular basis of DPD deficiency. Experimental Design: DPD deficiency was identified phenotypically by both enzyme assay and uracil breath test, and genotypically by denaturing high-performance liquid chromatography. The methylation status was evaluated in PCR products (209 bp) of bisulfite-modified DPYD promoter, using a novel denaturing high-performance liquid chromatography method that distinguishes between methylated and unmethylated alleles. Clinical samples included five volunteers with normal DPD enzyme activity, five DPD-deficient volunteers, and five DPD-deficient cancer patients with a history of 5-FU toxicity. Results: No evidence of methylation was detected in samples from volunteers with normal DPD. Methylation was detected in five of five DPD-deficient volunteers and in three of five of the DPD-deficient cancer patient samples. Of note, one of the two samples from patients with DPD-deficient cancer with no evidence of methylation had the mutation DPYD*2A, whereas the other had DPYD*13. Discussion: Methylation of the DPYD promoter region is associated with down-regulation of DPD activity in clinical samples and should be considered as a potentially important regulatory mechanism of DPD activity and basis for 5-FU toxicity in cancer patients.
UR - http://www.scopus.com/inward/record.url?scp=29344443013&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=29344443013&partnerID=8YFLogxK
U2 - 10.1158/1078-0432.CCR-05-1520
DO - 10.1158/1078-0432.CCR-05-1520
M3 - Article
C2 - 16361556
AN - SCOPUS:29344443013
SN - 1078-0432
VL - 11
SP - 8699
EP - 8705
JO - Clinical Cancer Research
JF - Clinical Cancer Research
IS - 24
ER -