Methane monooxygenase component B mutants alter the kinetics of steps throughout the catalytic cycle

B. J. Wallar, J. D. Lipscomb

Research output: Contribution to journalArticlepeer-review

77 Scopus citations


Component interactions play important roles in the regulation of catalysis by methane monooxygenase (MMO). The binding of component B (MMOB) to the hydroxylase component (MMOH) has been shown in previous studies to cause structural changes in MMOH that result in altered thermodynamic and kinetic properties during the reduction and oxygen binding steps of the catalytic cycle. Here, specific amino acid residues of MMOB that play important roles in the interconversion of several intermediates of the MMO cycle have been identified. Both of the histidine residues in Methylosinus trichosporium OB3b MMOB (H5 and H33) were chemically modified by diethylpyrocarbonate (DEPC). Although the DEPC-MMOB species exhibited only minor changes relative to unmodified MMOB in steady-state MMO turnover, large decreases in the formation rate constants of the reaction cycle intermediates, compound P and compound Q, were observed. The site specific mutants H5A, H33A, and H5A/H33A were made and characterized. H5A and wild type MMOB elicited similar steady-state and transient kinetics, although the mutant caused a slightly lower rate constant for Q formation. Conversely, H33A exhibited a > 50-fold decrease in the P formation rate constant, which resulted in slower formation of Q. The kinetics of the double mutant (H5A/H33A) were similar to those of H33A, suggesting that the highly conserved residue, H33, has the most significant effect on the efficient progress of the cycle. Ongoing NMR investigations of residues perturbed by formation of the MMOH-MMOB complex suggested construction of the MMOB N107G/S109A/S110A/T111A quadruple mutant. This mutant was found to elicit a nearly 2-fold increase in specific activity for steady-state MMO turnover of large substrates such as furan and nitrobenzene but caused no similar increase for the physiological substrate, methane. While the quadruple mutant did not have a significant effect on P and Q formation, it caused an almost 3-fold increase in the decay rate constant of Q for furan oxidation and a 2-fold faster product release rate constant for p-nitrophenol resulting from nitrobenzene oxidation. Conversely, this mutant caused the Q decay rate constant to decrease 7-fold for methane oxidation but left the product release step unaffected. These results show for the first time that MMOB exerts influence at late as well as early steps in the catalytic cycle. They also suggest that MMOB plays a critical role in determining the ability of MMO to distinguish between methane and larger substrates.

Original languageEnglish (US)
Pages (from-to)2220-2233
Number of pages14
Issue number7
StatePublished - Feb 20 2001


Dive into the research topics of 'Methane monooxygenase component B mutants alter the kinetics of steps throughout the catalytic cycle'. Together they form a unique fingerprint.

Cite this