Metabolism of a disulfiram metabolite, S-Methyl N,N-diethyldithiocarbamate, by flavin monooxygenase in human renal microsomes

M. Gennett Pike, Dennis C. Mays, David W. Macomber, James J. Lipsky

Research output: Contribution to journalArticle

32 Citations (Scopus)

Abstract

S-Methyl N,N-diethyldithiocarbamate (MeDDC), a metabolite of the alcohol deterrent disulfiram, is converted to MeDDC sulfine and then S-methyl N,N-diethylthiocarbamate sulfoxide, the proposed active metabolite in vivo. Several isoforms of CYP450 and to a lesser extent flavin monooxygenase (FMO) metabolize MeDDC in the liver. The human kidney contains FMO1 and several isoforms of CYP450, including members of the CYP3A, CYP4A, CYP2B, and CYP4F subfamilies. In this study the metabolism of MeDDC by the human kidney was examined, and the enzymes responsible for this metabolism were determined. MeDDC was incubated with human renal microsomes from five donors or with insect microsomes containing human FMO1, CYP4A11, CYP3A4, CYP3A5, or CYP2B6. MeDDC sulfine was formed at 5 μM MeDDC by renal microsomes at a rate of 210 ± 50 pmol/min/mg of microsomal protein (mean ± S.D., n = 5) and by FMO1 at 7.6 ± 0.2 nmol/min/nmol (n = 3). Oxidation of 5 μM MeDDC was negligible by all CYP450 tested (≤0.03 nmol/min/nmol). Inhibition of FMO by methimazole or heat diminished MeDDC sulfine formation 75 to 89% in renal microsomes. Inhibition of CYP450 in renal microsomes by N-benzylimidazole or antibody to the CYP450 NADPH reductase had no effect on MeDDC sulfine production. Benzydamine N-oxidation, a probe for FMO activity, correlated with MeDDC sulfine formation in renal microsomes (r = 0.951, p = 0.013). The KM values for MeDDC sulfine formation by renal microsomes and recombinant human FMO1 were 11 and 15 μM, respectively. These results demonstrate a role for the kidney and FMO1 in the metabolism of MeDDC in humans.

Original languageEnglish (US)
Pages (from-to)127-132
Number of pages6
JournalDrug Metabolism and Disposition
Volume29
Issue number2
StatePublished - Feb 13 2001

Fingerprint

Ditiocarb
Disulfiram
dimethylaniline monooxygenase (N-oxide forming)
Microsomes
Mixed Function Oxygenases
Kidney
Cytochrome P-450 CYP3A
sulfoxide
Alcohol Deterrents
Protein Isoforms
Cytochrome P-450 CYP4A
Benzydamine
Methimazole
4,6-dinitro-o-cresol
NADP
Insects
S-methyl-N,N-diethyldithiocarbamate sulfine
Oxidoreductases
Hot Temperature

Cite this

Metabolism of a disulfiram metabolite, S-Methyl N,N-diethyldithiocarbamate, by flavin monooxygenase in human renal microsomes. / Pike, M. Gennett; Mays, Dennis C.; Macomber, David W.; Lipsky, James J.

In: Drug Metabolism and Disposition, Vol. 29, No. 2, 13.02.2001, p. 127-132.

Research output: Contribution to journalArticle

@article{dcb0e00bdb994ac9ba709710189f8dc0,
title = "Metabolism of a disulfiram metabolite, S-Methyl N,N-diethyldithiocarbamate, by flavin monooxygenase in human renal microsomes",
abstract = "S-Methyl N,N-diethyldithiocarbamate (MeDDC), a metabolite of the alcohol deterrent disulfiram, is converted to MeDDC sulfine and then S-methyl N,N-diethylthiocarbamate sulfoxide, the proposed active metabolite in vivo. Several isoforms of CYP450 and to a lesser extent flavin monooxygenase (FMO) metabolize MeDDC in the liver. The human kidney contains FMO1 and several isoforms of CYP450, including members of the CYP3A, CYP4A, CYP2B, and CYP4F subfamilies. In this study the metabolism of MeDDC by the human kidney was examined, and the enzymes responsible for this metabolism were determined. MeDDC was incubated with human renal microsomes from five donors or with insect microsomes containing human FMO1, CYP4A11, CYP3A4, CYP3A5, or CYP2B6. MeDDC sulfine was formed at 5 μM MeDDC by renal microsomes at a rate of 210 ± 50 pmol/min/mg of microsomal protein (mean ± S.D., n = 5) and by FMO1 at 7.6 ± 0.2 nmol/min/nmol (n = 3). Oxidation of 5 μM MeDDC was negligible by all CYP450 tested (≤0.03 nmol/min/nmol). Inhibition of FMO by methimazole or heat diminished MeDDC sulfine formation 75 to 89{\%} in renal microsomes. Inhibition of CYP450 in renal microsomes by N-benzylimidazole or antibody to the CYP450 NADPH reductase had no effect on MeDDC sulfine production. Benzydamine N-oxidation, a probe for FMO activity, correlated with MeDDC sulfine formation in renal microsomes (r = 0.951, p = 0.013). The KM values for MeDDC sulfine formation by renal microsomes and recombinant human FMO1 were 11 and 15 μM, respectively. These results demonstrate a role for the kidney and FMO1 in the metabolism of MeDDC in humans.",
author = "Pike, {M. Gennett} and Mays, {Dennis C.} and Macomber, {David W.} and Lipsky, {James J.}",
year = "2001",
month = "2",
day = "13",
language = "English (US)",
volume = "29",
pages = "127--132",
journal = "Drug Metabolism and Disposition",
issn = "0090-9556",
publisher = "American Society for Pharmacology and Experimental Therapeutics",
number = "2",

}

TY - JOUR

T1 - Metabolism of a disulfiram metabolite, S-Methyl N,N-diethyldithiocarbamate, by flavin monooxygenase in human renal microsomes

AU - Pike, M. Gennett

AU - Mays, Dennis C.

AU - Macomber, David W.

AU - Lipsky, James J.

PY - 2001/2/13

Y1 - 2001/2/13

N2 - S-Methyl N,N-diethyldithiocarbamate (MeDDC), a metabolite of the alcohol deterrent disulfiram, is converted to MeDDC sulfine and then S-methyl N,N-diethylthiocarbamate sulfoxide, the proposed active metabolite in vivo. Several isoforms of CYP450 and to a lesser extent flavin monooxygenase (FMO) metabolize MeDDC in the liver. The human kidney contains FMO1 and several isoforms of CYP450, including members of the CYP3A, CYP4A, CYP2B, and CYP4F subfamilies. In this study the metabolism of MeDDC by the human kidney was examined, and the enzymes responsible for this metabolism were determined. MeDDC was incubated with human renal microsomes from five donors or with insect microsomes containing human FMO1, CYP4A11, CYP3A4, CYP3A5, or CYP2B6. MeDDC sulfine was formed at 5 μM MeDDC by renal microsomes at a rate of 210 ± 50 pmol/min/mg of microsomal protein (mean ± S.D., n = 5) and by FMO1 at 7.6 ± 0.2 nmol/min/nmol (n = 3). Oxidation of 5 μM MeDDC was negligible by all CYP450 tested (≤0.03 nmol/min/nmol). Inhibition of FMO by methimazole or heat diminished MeDDC sulfine formation 75 to 89% in renal microsomes. Inhibition of CYP450 in renal microsomes by N-benzylimidazole or antibody to the CYP450 NADPH reductase had no effect on MeDDC sulfine production. Benzydamine N-oxidation, a probe for FMO activity, correlated with MeDDC sulfine formation in renal microsomes (r = 0.951, p = 0.013). The KM values for MeDDC sulfine formation by renal microsomes and recombinant human FMO1 were 11 and 15 μM, respectively. These results demonstrate a role for the kidney and FMO1 in the metabolism of MeDDC in humans.

AB - S-Methyl N,N-diethyldithiocarbamate (MeDDC), a metabolite of the alcohol deterrent disulfiram, is converted to MeDDC sulfine and then S-methyl N,N-diethylthiocarbamate sulfoxide, the proposed active metabolite in vivo. Several isoforms of CYP450 and to a lesser extent flavin monooxygenase (FMO) metabolize MeDDC in the liver. The human kidney contains FMO1 and several isoforms of CYP450, including members of the CYP3A, CYP4A, CYP2B, and CYP4F subfamilies. In this study the metabolism of MeDDC by the human kidney was examined, and the enzymes responsible for this metabolism were determined. MeDDC was incubated with human renal microsomes from five donors or with insect microsomes containing human FMO1, CYP4A11, CYP3A4, CYP3A5, or CYP2B6. MeDDC sulfine was formed at 5 μM MeDDC by renal microsomes at a rate of 210 ± 50 pmol/min/mg of microsomal protein (mean ± S.D., n = 5) and by FMO1 at 7.6 ± 0.2 nmol/min/nmol (n = 3). Oxidation of 5 μM MeDDC was negligible by all CYP450 tested (≤0.03 nmol/min/nmol). Inhibition of FMO by methimazole or heat diminished MeDDC sulfine formation 75 to 89% in renal microsomes. Inhibition of CYP450 in renal microsomes by N-benzylimidazole or antibody to the CYP450 NADPH reductase had no effect on MeDDC sulfine production. Benzydamine N-oxidation, a probe for FMO activity, correlated with MeDDC sulfine formation in renal microsomes (r = 0.951, p = 0.013). The KM values for MeDDC sulfine formation by renal microsomes and recombinant human FMO1 were 11 and 15 μM, respectively. These results demonstrate a role for the kidney and FMO1 in the metabolism of MeDDC in humans.

UR - http://www.scopus.com/inward/record.url?scp=0035152862&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035152862&partnerID=8YFLogxK

M3 - Article

C2 - 11159801

AN - SCOPUS:0035152862

VL - 29

SP - 127

EP - 132

JO - Drug Metabolism and Disposition

JF - Drug Metabolism and Disposition

SN - 0090-9556

IS - 2

ER -