Metabolic pathway analysis of a recombinant yeast for rational strain development

Ross Carlson, David Fell, Friedrich Srienc

Research output: Contribution to journalArticle

95 Citations (Scopus)

Abstract

Elementary mode analysis has been used to study a metabolic pathway model of a recombinant Saccharomyces cerevisiae system that was genetically engineered to produce the bacterial storage compound poly-β-hydroxybutyrate (PHB). The model includes biochemical reactions from the intermediary metabolism and takes into account cellular compartmentalization as well as the reversibility/irreversibility of the reactions. The reaction network connects the production and/or consumption of eight external metabolites including glucose, acetate, glycerol, ethanol, PHB, CO2, succinate, and adenosine triphosphate (ATP). Elementary mode analysis of the wild-type S. cerevisiae system reveals 241 unique reaction combinations that balance the eight external metabolites. When the recombinant PHB pathway is included, and when the reaction model is altered to simulate the experimental conditions when PHB accumulates, the analysis reveals 20 unique elementary modes. Of these 20 modes, 7 produce PHB with the optimal mode having a theoretical PHB carbon yield of 0.67. Elementary mode analysis was also used to analyze the possible effects of biochemical network modifications and altered culturing conditions. When the natively absent ATP citrate-lyase activity is added to the recombinant reaction network, the number of unique modes increases from 20 to 496, with 314 of these modes producing PHB. With this topological modification, the maximum theoretical PHB carbon yield increases from 0.67 to 0.83. Adding a transhydrogenase reaction to the model also improves the theoretical conversion of substrate into PHB. The recombinant system with the transhydrogenase reaction but without the ATP citrate-lyase reaction has an increase in PHB carbon yield from 0.67 to 0.71. When the model includes both the ATP citrate-lyase reaction and the transhydrogenase reaction, the maximum theoretical carbon yield increases to 0.84. The reaction model was also used to explore the possibility of producing PHB under anaerobic conditions. In the absence of oxygen, the recombinant reaction network possesses two elementary modes capable of producing PHB. Interestingly, both modes also produce ethanol. Elementary mode analysis provides a means of deconstructing complex metabolic networks into their basic functional units. This information can be used for analyzing existing pathways and for the rational design of further modifications that could improve the system's conversion of substrate into product.

Original languageEnglish (US)
Pages (from-to)121-134
Number of pages14
JournalBiotechnology and bioengineering
Volume79
Issue number2
DOIs
StatePublished - Jul 20 2002

Fingerprint

Hydroxybutyrates
Metabolic Networks and Pathways
Yeast
Yeasts
citrate (pro-3S)-lyase
Carbon
Metabolites
Ethanol
Adenosine Triphosphate
Substrates
Glycerol
Metabolism
Glucose
Saccharomyces cerevisiae
Oxygen
Succinic Acid

Keywords

  • Elementary mode analysis
  • Metabolic pathway analysis
  • Poly-hydroxybutyrate
  • Saccharomyces cerevisiae

Cite this

Metabolic pathway analysis of a recombinant yeast for rational strain development. / Carlson, Ross; Fell, David; Srienc, Friedrich.

In: Biotechnology and bioengineering, Vol. 79, No. 2, 20.07.2002, p. 121-134.

Research output: Contribution to journalArticle

@article{5caa56943b0a4fb78e63f081fc092c0c,
title = "Metabolic pathway analysis of a recombinant yeast for rational strain development",
abstract = "Elementary mode analysis has been used to study a metabolic pathway model of a recombinant Saccharomyces cerevisiae system that was genetically engineered to produce the bacterial storage compound poly-β-hydroxybutyrate (PHB). The model includes biochemical reactions from the intermediary metabolism and takes into account cellular compartmentalization as well as the reversibility/irreversibility of the reactions. The reaction network connects the production and/or consumption of eight external metabolites including glucose, acetate, glycerol, ethanol, PHB, CO2, succinate, and adenosine triphosphate (ATP). Elementary mode analysis of the wild-type S. cerevisiae system reveals 241 unique reaction combinations that balance the eight external metabolites. When the recombinant PHB pathway is included, and when the reaction model is altered to simulate the experimental conditions when PHB accumulates, the analysis reveals 20 unique elementary modes. Of these 20 modes, 7 produce PHB with the optimal mode having a theoretical PHB carbon yield of 0.67. Elementary mode analysis was also used to analyze the possible effects of biochemical network modifications and altered culturing conditions. When the natively absent ATP citrate-lyase activity is added to the recombinant reaction network, the number of unique modes increases from 20 to 496, with 314 of these modes producing PHB. With this topological modification, the maximum theoretical PHB carbon yield increases from 0.67 to 0.83. Adding a transhydrogenase reaction to the model also improves the theoretical conversion of substrate into PHB. The recombinant system with the transhydrogenase reaction but without the ATP citrate-lyase reaction has an increase in PHB carbon yield from 0.67 to 0.71. When the model includes both the ATP citrate-lyase reaction and the transhydrogenase reaction, the maximum theoretical carbon yield increases to 0.84. The reaction model was also used to explore the possibility of producing PHB under anaerobic conditions. In the absence of oxygen, the recombinant reaction network possesses two elementary modes capable of producing PHB. Interestingly, both modes also produce ethanol. Elementary mode analysis provides a means of deconstructing complex metabolic networks into their basic functional units. This information can be used for analyzing existing pathways and for the rational design of further modifications that could improve the system's conversion of substrate into product.",
keywords = "Elementary mode analysis, Metabolic pathway analysis, Poly-hydroxybutyrate, Saccharomyces cerevisiae",
author = "Ross Carlson and David Fell and Friedrich Srienc",
year = "2002",
month = "7",
day = "20",
doi = "10.1002/bit.10305",
language = "English (US)",
volume = "79",
pages = "121--134",
journal = "Biotechnology and Bioengineering",
issn = "0006-3592",
publisher = "Wiley-VCH Verlag",
number = "2",

}

TY - JOUR

T1 - Metabolic pathway analysis of a recombinant yeast for rational strain development

AU - Carlson, Ross

AU - Fell, David

AU - Srienc, Friedrich

PY - 2002/7/20

Y1 - 2002/7/20

N2 - Elementary mode analysis has been used to study a metabolic pathway model of a recombinant Saccharomyces cerevisiae system that was genetically engineered to produce the bacterial storage compound poly-β-hydroxybutyrate (PHB). The model includes biochemical reactions from the intermediary metabolism and takes into account cellular compartmentalization as well as the reversibility/irreversibility of the reactions. The reaction network connects the production and/or consumption of eight external metabolites including glucose, acetate, glycerol, ethanol, PHB, CO2, succinate, and adenosine triphosphate (ATP). Elementary mode analysis of the wild-type S. cerevisiae system reveals 241 unique reaction combinations that balance the eight external metabolites. When the recombinant PHB pathway is included, and when the reaction model is altered to simulate the experimental conditions when PHB accumulates, the analysis reveals 20 unique elementary modes. Of these 20 modes, 7 produce PHB with the optimal mode having a theoretical PHB carbon yield of 0.67. Elementary mode analysis was also used to analyze the possible effects of biochemical network modifications and altered culturing conditions. When the natively absent ATP citrate-lyase activity is added to the recombinant reaction network, the number of unique modes increases from 20 to 496, with 314 of these modes producing PHB. With this topological modification, the maximum theoretical PHB carbon yield increases from 0.67 to 0.83. Adding a transhydrogenase reaction to the model also improves the theoretical conversion of substrate into PHB. The recombinant system with the transhydrogenase reaction but without the ATP citrate-lyase reaction has an increase in PHB carbon yield from 0.67 to 0.71. When the model includes both the ATP citrate-lyase reaction and the transhydrogenase reaction, the maximum theoretical carbon yield increases to 0.84. The reaction model was also used to explore the possibility of producing PHB under anaerobic conditions. In the absence of oxygen, the recombinant reaction network possesses two elementary modes capable of producing PHB. Interestingly, both modes also produce ethanol. Elementary mode analysis provides a means of deconstructing complex metabolic networks into their basic functional units. This information can be used for analyzing existing pathways and for the rational design of further modifications that could improve the system's conversion of substrate into product.

AB - Elementary mode analysis has been used to study a metabolic pathway model of a recombinant Saccharomyces cerevisiae system that was genetically engineered to produce the bacterial storage compound poly-β-hydroxybutyrate (PHB). The model includes biochemical reactions from the intermediary metabolism and takes into account cellular compartmentalization as well as the reversibility/irreversibility of the reactions. The reaction network connects the production and/or consumption of eight external metabolites including glucose, acetate, glycerol, ethanol, PHB, CO2, succinate, and adenosine triphosphate (ATP). Elementary mode analysis of the wild-type S. cerevisiae system reveals 241 unique reaction combinations that balance the eight external metabolites. When the recombinant PHB pathway is included, and when the reaction model is altered to simulate the experimental conditions when PHB accumulates, the analysis reveals 20 unique elementary modes. Of these 20 modes, 7 produce PHB with the optimal mode having a theoretical PHB carbon yield of 0.67. Elementary mode analysis was also used to analyze the possible effects of biochemical network modifications and altered culturing conditions. When the natively absent ATP citrate-lyase activity is added to the recombinant reaction network, the number of unique modes increases from 20 to 496, with 314 of these modes producing PHB. With this topological modification, the maximum theoretical PHB carbon yield increases from 0.67 to 0.83. Adding a transhydrogenase reaction to the model also improves the theoretical conversion of substrate into PHB. The recombinant system with the transhydrogenase reaction but without the ATP citrate-lyase reaction has an increase in PHB carbon yield from 0.67 to 0.71. When the model includes both the ATP citrate-lyase reaction and the transhydrogenase reaction, the maximum theoretical carbon yield increases to 0.84. The reaction model was also used to explore the possibility of producing PHB under anaerobic conditions. In the absence of oxygen, the recombinant reaction network possesses two elementary modes capable of producing PHB. Interestingly, both modes also produce ethanol. Elementary mode analysis provides a means of deconstructing complex metabolic networks into their basic functional units. This information can be used for analyzing existing pathways and for the rational design of further modifications that could improve the system's conversion of substrate into product.

KW - Elementary mode analysis

KW - Metabolic pathway analysis

KW - Poly-hydroxybutyrate

KW - Saccharomyces cerevisiae

UR - http://www.scopus.com/inward/record.url?scp=0037142769&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037142769&partnerID=8YFLogxK

U2 - 10.1002/bit.10305

DO - 10.1002/bit.10305

M3 - Article

C2 - 12115428

AN - SCOPUS:0037142769

VL - 79

SP - 121

EP - 134

JO - Biotechnology and Bioengineering

JF - Biotechnology and Bioengineering

SN - 0006-3592

IS - 2

ER -