Metabolic Interference of sod gene mutations on catalase activity in Escherichia coli exposed to Gramoxone® (paraquat) herbicide

Fernanda Gravina, Tatiane Dobrzanski, Luiz R. Olchanheski, Carolina W. Galvão, Péricles M. Reche, Sonia A. Pileggi, Ricardo A. Azevedo, Michael J. Sadowsky, Marcos Pileggi

Research output: Contribution to journalArticlepeer-review

7 Scopus citations


Herbicides are continuously used to minimize the loss of crop productivity in agricultural environments. They can, however, cause damage by inhibiting the growth of microbiota via oxidative stress, due to the increased production of reactive oxygen species (ROS). Cellular responses to ROS involve the action of enzymes, including superoxide dismutase (SOD) and catalase (CAT). The objective of this study was to evaluate adaptive responses in Escherichia coli K-12 to paraquat, the active ingredient in the herbicide Gramoxone®. Mutant bacterial strains carrying deletions in genes encoding Mn-SOD (sodA) and Fe-SOD (sodB) were used and resulted in distinct levels of hydrogen peroxide production, interference in malondialdehyde, and viability. Mutations also resulted in different levels of interference with the activity of CAT isoenzymes and in the inactivation of Cu/Zn-SOD activity. These mutations may be responsible for metabolic differences among the evaluated strains, resulting in different patterns of antioxidative responses, depending on mutation background. While damage to the ΔsodB strain was minor at late log phase, the reverse was true at mid log phase for the ΔsodA strain. These results demonstrate the important role of these genes in defense against oxidative stress in different periods of growth. Furthermore, the lack of Cu/Zn-SOD activity in both mutant strains indicated that common metal cofactors likely interfere in SOD activity regulation. These results also indicate that E. coli K-12, a classical non-environmental strain, constitutes a model of phenotypic plasticity for adaptation to a redox-cycling herbicide through redundancy of different isoforms of SOD and CAT enzymes.

Original languageEnglish (US)
Pages (from-to)89-96
Number of pages8
JournalEcotoxicology and Environmental Safety
StatePublished - May 1 2017

Bibliographical note

Funding Information:
This study was funded by Coordination for the Improvement of Higher Level Personnel (CAPES); National Council of Technological and Scientific Development (CNPq), Universal (Grant number: 445083/2014-0) and Science without Borders (Grant number: 401354/2014-8); Foundation for Research Support of the State of S?o Paulo (FAPESP); and Foundation for Research Support of the State of Paran? (Funda??o Arauc?ria).


  • Knockout mutation
  • Malondialdehyde
  • Oxidative stress
  • Peroxide
  • Superoxide dismutase

Fingerprint Dive into the research topics of 'Metabolic Interference of sod gene mutations on catalase activity in Escherichia coli exposed to Gramoxone® (paraquat) herbicide'. Together they form a unique fingerprint.

Cite this