TY - JOUR
T1 - Melt inclusion evidence for CO2-rich melts beneath the western branch of the East African Rift
T2 - implications for long-term storage of volatiles in the deep lithospheric mantle
AU - Hudgins, T. R.
AU - Mukasa, S. B.
AU - Simon, A. C.
AU - Moore, G.
AU - Barifaijo, E.
N1 - Publisher Copyright:
© 2015, Springer-Verlag Berlin Heidelberg.
PY - 2015/5/1
Y1 - 2015/5/1
N2 - We present new major element, trace element, and volatile (H2O, CO2, S, F, and Cl) concentrations of olivine-hosted melt inclusions from five high-K, low-silica basanites from the western branch of the East African Rift System and use these data to investigate the generation of H2O- and CO2-rich melts at up to ~150 km depth. Measured H2O and CO2 concentrations reach ~2.5 and ~1 wt%, respectively, representing some of the highest CO2 concentrations measured in a melt inclusion to date. These measurements represent direct evidence of the high CO2 and H2O concentrations required to generate high-K alkaline lavas, and the CO2 that has been previously inferred to be necessary for the low mantle potential temperatures in the area. Ratios of CO2/Nb, CO2/Ba, and CO2/Cl are used to estimate an initial melt CO2 concentration of 5–12 wt%. The measured CO2 concentrations are consistent with CO2 solubilities determined by molecular dynamics calculations and high-pressure experiments for melt generation at 3–6 GPa; the depth of melting suggested by previous studies in the area. These melt inclusions measurements represent direct evidence for the presence of H2O- and CO2-rich melts in the deep upper mantle that have been proposed based on experimental and seismic evidence. Primitive-mantle normalized trace element patterns more closely resemble those found in subduction settings rather than ocean island basalt, and ratios of slab fluid tracers such as Li/Dy and B/Be indicate that the measured volatile abundances may be related to Neoproterozoic subduction during the assembly of Gondwana, implying the storage of volatiles in the mantle by subduction-related metasomatism.
AB - We present new major element, trace element, and volatile (H2O, CO2, S, F, and Cl) concentrations of olivine-hosted melt inclusions from five high-K, low-silica basanites from the western branch of the East African Rift System and use these data to investigate the generation of H2O- and CO2-rich melts at up to ~150 km depth. Measured H2O and CO2 concentrations reach ~2.5 and ~1 wt%, respectively, representing some of the highest CO2 concentrations measured in a melt inclusion to date. These measurements represent direct evidence of the high CO2 and H2O concentrations required to generate high-K alkaline lavas, and the CO2 that has been previously inferred to be necessary for the low mantle potential temperatures in the area. Ratios of CO2/Nb, CO2/Ba, and CO2/Cl are used to estimate an initial melt CO2 concentration of 5–12 wt%. The measured CO2 concentrations are consistent with CO2 solubilities determined by molecular dynamics calculations and high-pressure experiments for melt generation at 3–6 GPa; the depth of melting suggested by previous studies in the area. These melt inclusions measurements represent direct evidence for the presence of H2O- and CO2-rich melts in the deep upper mantle that have been proposed based on experimental and seismic evidence. Primitive-mantle normalized trace element patterns more closely resemble those found in subduction settings rather than ocean island basalt, and ratios of slab fluid tracers such as Li/Dy and B/Be indicate that the measured volatile abundances may be related to Neoproterozoic subduction during the assembly of Gondwana, implying the storage of volatiles in the mantle by subduction-related metasomatism.
KW - Alkaline volcanism
KW - Basanites
KW - East African Rift
KW - Melt inclusions
KW - Metasomatism
KW - Subduction
KW - Volatiles (HO, CO, S, F, Cl)
UR - http://www.scopus.com/inward/record.url?scp=84928596644&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84928596644&partnerID=8YFLogxK
U2 - 10.1007/s00410-015-1140-9
DO - 10.1007/s00410-015-1140-9
M3 - Article
AN - SCOPUS:84928596644
SN - 0010-7999
VL - 169
JO - Contributions to Mineralogy and Petrology
JF - Contributions to Mineralogy and Petrology
IS - 5
ER -