Meeting orbit determination requirements for a small satellite mission

Adonis Pimienta-Peñalver, Richard Linares, John L. Crassidis

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A study is conducted with the goal of utilizing estimation techniques on measurements obtained from various onboard resources such as a Sun sensor, a magnetometer and a commercial GPS unit in order to approximate the true trajectory of the vehicle in realtime and minimize the error associated with the process. This carries significant relevance to the field of orbit determination, where a small mission could operate a relatively cheap system for tracking purposes. This paper models a GPS sensor to become available only 5 minutes each day, which approximates a worst-case scenario where sparse pseudorange data is only possible due to suboptimal operating conditions for commercial GPS receivers taken to the space environment. Using a dynamic propagation model, which includes effects of Earth's gravity, J2 zonal harmonics, and atmospheric drag, a sequential filtering method is used in order to estimate the states (position and velocity) of the vehicle with respect to time. This study demonstrates the capability of this system to achieve an error of approximately 15 meters, which is greatly influenced by the inclusion.

Original languageEnglish (US)
Title of host publicationGuidance and Control 2012 - Advances in the Astronautical Sciences
Subtitle of host publicationProceedings of the 35th Annual AAS Rocky Mountain Section Guidance and Control Conference
Pages805-815
Number of pages11
StatePublished - 2012
Event35th Annual AAS Rocky Mountain Section Guidance and Control Conference - Breckenridge, CO, United States
Duration: Feb 3 2012Feb 8 2012

Publication series

NameAdvances in the Astronautical Sciences
Volume144
ISSN (Print)0065-3438

Other

Other35th Annual AAS Rocky Mountain Section Guidance and Control Conference
Country/TerritoryUnited States
CityBreckenridge, CO
Period2/3/122/8/12

Fingerprint

Dive into the research topics of 'Meeting orbit determination requirements for a small satellite mission'. Together they form a unique fingerprint.

Cite this