Mechanisms of dominance by the invasive hybrid cattail Typha × glauca

Daniel J. Larkin, Monika J. Freyman, Shane C. Lishawa, Pamela Geddes, Nancy C. Tuchman

Research output: Contribution to journalArticlepeer-review

92 Scopus citations


The mechanisms by which invasive plants displace native species are often not well elucidated, limiting knowledge of invasion dynamics and the scientific basis for management responses. Typha × glauca Godr. invades wetlands throughout much of North America. Like other problematic wetland invaders, Typha is large, grows densely, and leaves behind copious litter. It thus has the potential to impact wetlands both in life and after death. We assessed patterns in field settings and used simulated wetland-plant communities to experimentally test abiotic and community responses to live Typha, Typha litter, and water-level differences (confounded in the field) using a full-factorial design. In general, litter was a stronger driver of change than live Typha. The greatest impacts were seen where, as in nature, live and dead Typha co-occurred. Live-Typha treatments did not differ from controls in light or temperature conditions but did reduce community biomass and alter community composition. Litter strongly affected light, temperature and its variability, community and species-level plant biomass, and community composition. Interactions between live Typha and litter affected aspects of plant-community composition. Advantageously for Typha, interspecific litter effects were not mirrored by intraspecific suppression of live Typha. These findings clarify how Typha is such an effective invader. Similar mechanisms are likely involved in invasions by other plant species, particularly in wetlands. Managers should respond quickly to new Typha invasions and, when dealing with established stands, remove litter in addition to eradicating live plants.

Original languageEnglish (US)
Pages (from-to)65-77
Number of pages13
JournalBiological Invasions
Issue number1
StatePublished - Jan 2012

Bibliographical note

Funding Information:
Acknowledgments This research was supported by a grant from the National Science Foundation Graduate Research Fellowship Program to NCT and MJF (DGE 0343372) and awards to MJF from The Nature Conservancy and the University of Michigan Biological Station. We thank R. Conley, C. Elliot, D. Goldberg, K. Jankowski, E. Kay, S. Khan, K. Kuehn, O. McKenna, M. Mitchell, E. Mynarich, R. Pillsbury and his Wetlands students, J. Price, B. Schuetz, S. Shattuck, L. Vail, and many others for help with data collection; C. Peterson, J. Kelly, R. Lammers, and M. Berg for their advice on various aspects of the research; and two anonymous reviewers for comments that substantially improved an earlier version of this manuscript.


  • Competition
  • Invasive species
  • Litter
  • Typha × glauca
  • Wetland


Dive into the research topics of 'Mechanisms of dominance by the invasive hybrid cattail Typha × glauca'. Together they form a unique fingerprint.

Cite this