Mechanism of Methanol Dehydration Catalyzed by Al8O12Nodes Assisted by Linker Amine Groups of the Metal-Organic Framework CAU-1

Dong Yang, Saumil Chheda, Yinghui Lyu, Ziang Li, Yue Xiao, J. Ilja Siepmann, Laura Gagliardi, Bruce C. Gates

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


Elucidation of catalytic sites and mechanisms of reactions on metal oxides is hindered by the complexity and heterogeneity of the surfaces. In contrast, the metal oxide cluster nodes of metal-organic frameworks (MOFs) have well-defined, essentially molecular structures that provide excellent platforms for understanding catalytic reactions in depth. We report an experimental and density functional theory (DFT) investigation of methanol dehydration on the Al8O12nodes of the MOF CAU-1, presenting catalyst performance data obtained with vapor-phase methanol contacting MOF particles in a flow reactor at temperatures in the range of 180-250 °C. These data and infrared spectra of the MOF characterizing its reactivity with methanol and water show that the reactivities of node μ2-OH groups, influenced by the coordination environments of the node aluminum atoms, react with methanol to form catalytic sites incorporating methoxy ligands that bridge paired aluminum atoms, with the dehydration mechanism engaging nearby MOF linker amine groups that bond to methanol. DFT investigations of the mechanism suggest that the SN2-type methanol dehydration reaction is energetically favored to occur at MOF linker amine groups, which allow for a near-linear transition state (TS) geometry; in contrast, the central cavity of the Al8O12node adsorbs methanol strongly but, because of geometric constraints, renders the TS for methanol dehydration energetically unfavorable.

Original languageEnglish (US)
Pages (from-to)12845-12859
Number of pages15
JournalACS Catalysis
Issue number20
StatePublished - Oct 21 2022

Bibliographical note

Funding Information:
This work was supported as part of the Inorganometallic Catalyst Design Center, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award DE-SC0012702. D.Y. thanks the National Natural Science Foundation of China (22072066) for funding. The authors thank Dr. Carlo A. Gaggioli for insightful technical discussions.

Publisher Copyright:
© 2022 American Chemical Society. All rights reserved.


  • CAU-1
  • S2 mechanism
  • linker amine group
  • metal-organic frameworks
  • methanol dehydration


Dive into the research topics of 'Mechanism of Methanol Dehydration Catalyzed by Al8O12Nodes Assisted by Linker Amine Groups of the Metal-Organic Framework CAU-1'. Together they form a unique fingerprint.

Cite this