TY - JOUR
T1 - Mechanical properties of polymer-ceramic nanocomposite coatings by depth-sensing indentation
AU - Sun, Jiakuan
AU - Francis, Lorraine F.
AU - Gerberich, William W.
PY - 2005/2/1
Y1 - 2005/2/1
N2 - The mechanical properties of antimony-doped tin oxide (ATO) nanoparticle/poly (vinyl acetate-co-acrylic) (PVAc-co-acrylic) coatings with various ATO contents were investigated using depth-sensing indentation. These coatings were prepared from aqueous dispersions of ATO and PVAc-co-acrylic latex. Three types of methods, including a prolonged load holding time, analysis of the pull-off portion of the unloading curve, and dynamic indentation, were used to characterize the mechanical properties of these composite coatings. As compared to dynamic indentation, quasistatic conventional indentation even with a prolonged load holding time and analysis of the pull-off portion of unloading curves generate more scattered coating modulus data. This is due to the effect of creep deformation and inconsistency of the pull-off portion dimension, respectively. The results obtained using dynamic indentation are more reliable because the technique minimizes the effect of creep deformation using a combination load including static and dynamic components. The dynamic indentation results indicate that the addition of the ATO nanoparticles made the composite coatings stiffer and more elastic solid-like. For example, the storage indentation modulus of the PVAc-co-acrylic coating is ∼1 GPa and tan δ is -1.6; the addition of 0.50 volume fraction of ATO increased the modulus to ∼5 GPa and reduced the tan δ to -0.01.
AB - The mechanical properties of antimony-doped tin oxide (ATO) nanoparticle/poly (vinyl acetate-co-acrylic) (PVAc-co-acrylic) coatings with various ATO contents were investigated using depth-sensing indentation. These coatings were prepared from aqueous dispersions of ATO and PVAc-co-acrylic latex. Three types of methods, including a prolonged load holding time, analysis of the pull-off portion of the unloading curve, and dynamic indentation, were used to characterize the mechanical properties of these composite coatings. As compared to dynamic indentation, quasistatic conventional indentation even with a prolonged load holding time and analysis of the pull-off portion of unloading curves generate more scattered coating modulus data. This is due to the effect of creep deformation and inconsistency of the pull-off portion dimension, respectively. The results obtained using dynamic indentation are more reliable because the technique minimizes the effect of creep deformation using a combination load including static and dynamic components. The dynamic indentation results indicate that the addition of the ATO nanoparticles made the composite coatings stiffer and more elastic solid-like. For example, the storage indentation modulus of the PVAc-co-acrylic coating is ∼1 GPa and tan δ is -1.6; the addition of 0.50 volume fraction of ATO increased the modulus to ∼5 GPa and reduced the tan δ to -0.01.
UR - http://www.scopus.com/inward/record.url?scp=14044256401&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=14044256401&partnerID=8YFLogxK
U2 - 10.1002/pen.20271
DO - 10.1002/pen.20271
M3 - Article
AN - SCOPUS:14044256401
SN - 0032-3888
VL - 45
SP - 207
EP - 216
JO - Polymer Engineering and Science
JF - Polymer Engineering and Science
IS - 2
ER -