TY - JOUR
T1 - Measuring the extreme conditions created during cavitation
AU - Eddingsaas, N. C.
AU - Flannigan, D. J.
AU - Suslick, K. S.
PY - 2008/12/1
Y1 - 2008/12/1
N2 - Extreme temperatures and pressures are produced through acoustic cavitation: the formation, growth and collapse of bubbles in a liquid irradiated with high intensity ultrasound. Cavitation of single isolated bubbles have generally been assumed to give higher temperature conditions during compression than bubble clouds, but confirmation from the single bubble sonoluminescence (SBSL) emission spectra has been problematic because SBSL typically produces featureless emission spectra that reveal little about the intra-cavity physical conditions or chemical processes. Here we present definitive evidence of the existence of a hot, highly energetic plasma core during SBSL. From a luminescing bubble in sulfuric acid, excited state to excited state emission lines are observed both from noble gas ions (Ar+, Kr+, and Xe +) and from neutral atoms (Ne, Ar, Kr, and Xe). The excited states responsible for these emission lines range from 8.3 eV (for Xe) to 37.1 eV (for Ar+) above the ground state. Observation of emission lines allows for identification of intra-cavity species responsible for light emission; the energy levels of the emitters indicate the plasma generated during cavitation is comprised of highly energetic atomic and ionic species.
AB - Extreme temperatures and pressures are produced through acoustic cavitation: the formation, growth and collapse of bubbles in a liquid irradiated with high intensity ultrasound. Cavitation of single isolated bubbles have generally been assumed to give higher temperature conditions during compression than bubble clouds, but confirmation from the single bubble sonoluminescence (SBSL) emission spectra has been problematic because SBSL typically produces featureless emission spectra that reveal little about the intra-cavity physical conditions or chemical processes. Here we present definitive evidence of the existence of a hot, highly energetic plasma core during SBSL. From a luminescing bubble in sulfuric acid, excited state to excited state emission lines are observed both from noble gas ions (Ar+, Kr+, and Xe +) and from neutral atoms (Ne, Ar, Kr, and Xe). The excited states responsible for these emission lines range from 8.3 eV (for Xe) to 37.1 eV (for Ar+) above the ground state. Observation of emission lines allows for identification of intra-cavity species responsible for light emission; the energy levels of the emitters indicate the plasma generated during cavitation is comprised of highly energetic atomic and ionic species.
UR - http://www.scopus.com/inward/record.url?scp=84874858805&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84874858805&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:84874858805
SN - 2226-5147
SP - 3567
EP - 3572
JO - Proceedings - European Conference on Noise Control
JF - Proceedings - European Conference on Noise Control
T2 - 7th European Conference on Noise Control 2008, EURONOISE 2008
Y2 - 29 June 2008 through 4 July 2008
ER -