Abstract
The cross sections for the production of tt¯bb¯ and tt¯jj events and their ratio σtt¯bb¯/σtt¯jj are measured using data corresponding to an integrated luminosity of 2.3 fb−1collected in pp collisions at s=13 TeV with the CMS detector at the LHC. Events with two leptons (e or μ) and at least four reconstructed jets, including at least two identified as b quark jets, in the final state are selected. In the full phase space, the measured ratio is 0.022±0.003(stat)±0.006(syst), the cross section σtt¯bb¯ is 4.0±0.6(stat)±1.3(syst) pb and σtt¯jj is 184±6(stat)±33(syst) pb. The measurements are compared with the standard model expectations obtained from a POWHEG simulation at next-to-leading-order interfaced with PYTHIA.
Original language | English (US) |
---|---|
Pages (from-to) | 355-378 |
Number of pages | 24 |
Journal | Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics |
Volume | 776 |
DOIs | |
State | Published - Jan 10 2018 |
Bibliographical note
Funding Information:We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq , CAPES , FAPERJ , and FAPESP (Brazil); MES (Bulgaria); CERN ; CAS , MoST , and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER , ERC IUT , and ERDF (Estonia); Academy of Finland , MEC , and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF , DFG , and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP , CINVESTAV , CONACYT , LNS , SEP , and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON , RosAtom , RAS , RFBR and RAEP (Russia); MESTD (Serbia); SEIDI , CPAN , PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter , IPST , STAR , and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).
Funding Information:
Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract No. 675440 (European Union); the Leventis Foundation ; the A.P. Sloan Foundation ; the Alexander von Humboldt Foundation ; the Belgian Federal Science Policy Office ; the Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research , India; the HOMING PLUS program of the Foundation for Polish Science , cofinanced from European Union, Regional Development Fund , the Mobility Plus program of the Ministry of Science and Higher Education , the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428 , Opus 2014/13/B/ST2/02543 , 2014/15/B/ST2/03998 , and 2015/19/B/ST2/02861 , Sonata-bis 2012/07/E/ST2/01406 ; the National Priorities Research Program by Qatar National Research Fund ; the Programa Clarín-COFUND del Principado de Asturias ; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF ; the Rachadapisek Sompot Fund for Postdoctoral Fellowship , Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation , contract C-1845 .
Funding Information:
Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract No. 675440 (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Clarín-COFUND del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845.
Publisher Copyright:
© 2017 The Author
Keywords
- CMS
- Physics
- Top quark