Measurement of oxygen isotope ratios (18O/16O) of aqueous O2 in small samples by gas chromatography/isotope ratio mass spectrometry

Sarah G. Pati, Jakov Bolotin, Matthias S. Brennwald, Hans Peter E. Kohler, Roland A. Werner, Thomas B. Hofstetter

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Rationale Oxygen isotope fractionation of molecular O2 is an important process for the study of aerobic metabolism, photosynthesis, and formation of reactive oxygen species. The latter is of particular interest for investigating the mechanism of enzyme-catalyzed reactions, such as the oxygenation of organic pollutants, which is an important detoxification mechanism. Methods We developed a simple method to measure the δ18O values of dissolved O2 in small samples using automated split injection for gas chromatography coupled to isotope ratio mass spectrometry (GC/IRMS). After creating a N2 headspace, the dissolved O2 partitions from aqueous solution to the headspace, from which it can be injected into the gas chromatograph. Results In aqueous samples of 10 mL and in diluted air samples, we quantified the δ18O values at O2 concentrations of 16 μM and 86 μM, respectively. The chromatographic separation of O2 and N2 with a molecular sieve column made it possible to use N2 as the headspace gas for the extraction of dissolved O2 from water. We were therefore able to apply a rigorous δ18O blank correction for the quantification of 18O/16O ratios in 20 nmol of injected O2. Conclusions The successful quantification of 18O-kinetic isotope effects associated with enzymatic and chemical reduction of dissolved O2 illustrates how the proposed method can be applied for studying enzymatic O2 activation mechanisms in a variety of (bio)chemical processes.

Original languageEnglish (US)
Pages (from-to)684-690
Number of pages7
JournalRapid Communications in Mass Spectrometry
Volume30
Issue number6
DOIs
StatePublished - Mar 30 2016
Externally publishedYes

Bibliographical note

Publisher Copyright:
Copyright © 2016 John Wiley & Sons, Ltd.

Fingerprint

Dive into the research topics of 'Measurement of oxygen isotope ratios (18O/16O) of aqueous O2 in small samples by gas chromatography/isotope ratio mass spectrometry'. Together they form a unique fingerprint.

Cite this