MAP visibility estimation for large-scale dynamic 3D reconstruction

Hanbyul Joo, Hyun Soo Park, Yaser Sheikh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

25 Scopus citations

Abstract

Many traditional challenges in reconstructing 3D motion, such as matching across wide baselines and handling occlusion, reduce in significance as the number of unique viewpoints increases. However, to obtain this benefit, a new challenge arises: estimating precisely which cameras observe which points at each instant in time. We present a maximum a posteriori (MAP) estimate of the time-varying visibility of the target points to reconstruct the 3D motion of an event from a large number of cameras. Our algorithm takes, as input, camera poses and image sequences, and outputs the time-varying set of the cameras in which a target patch is visibile and its reconstructed trajectory. We model visibility estimation as a MAP estimate by incorporating various cues including photometric consistency, motion consistency, and geometric consistency, in conjunction with a prior that rewards consistent visibilities in proximal cameras. An optimal estimate of visibility is obtained by finding the minimum cut of a capacitated graph over cameras. We demonstrate that our method estimates visibility with greater accuracy, and increases tracking performance producing longer trajectories, at more locations, and at higher accuracies than methods that ignore visibility or use photometric consistency alone.

Original languageEnglish (US)
Title of host publicationProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
PublisherIEEE Computer Society
Pages1122-1129
Number of pages8
ISBN (Electronic)9781479951178, 9781479951178
DOIs
StatePublished - Sep 24 2014
Event27th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014 - Columbus, United States
Duration: Jun 23 2014Jun 28 2014

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Other

Other27th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014
Country/TerritoryUnited States
CityColumbus
Period6/23/146/28/14

Bibliographical note

Publisher Copyright:
© 2014 IEEE.

Fingerprint

Dive into the research topics of 'MAP visibility estimation for large-scale dynamic 3D reconstruction'. Together they form a unique fingerprint.

Cite this