Abstract
Decisiveness is the ability to commit to a decision quickly and efficiently; in contrast, indecision entails the repeated consideration of multiple alternative possibilities. In humans, the α2-adrenergic receptor agonist clonidine increases decisiveness in tasks that require planningthrough unknown neural mechanisms. In rats, indecision is manifested as reorienting behaviors at choice points (vicarious trial and error [VTE]), during which hippocampal representations alternate between prospective options. To determine whether the increase in decisiveness driven by clonidine also entails changes in hippocampal search processes, we compared the effect of clonidine on spatial representations in hippocampal neural ensembles as rats passed through a T-shaped decision point. Consistent with previous experiments, hippocampal representations reflected both chosen and unchosen paths during VTE events under saline control conditions. Also, consistent with previous experiments, hippocampal representations reflected the chosen path more than the unchosen path when the animal did not show VTE at the choice point. Injection of clonidine suppressed the spatial representation of the unchosen path at the choice point on VTE laps and hastened the differentiation of spatial representations of the chosen path from the unchosen path on non-VTE laps to appear before reaching the choice point. These results suggest that the decisiveness seen under clonidine is due to limited exploration of potential options in hippocampus, and suggest novel roles for noradrenaline as a modulator of the hippocampal search processes.
Original language | English (US) |
---|---|
Pages (from-to) | 814-827 |
Number of pages | 14 |
Journal | Journal of Neuroscience |
Volume | 36 |
Issue number | 3 |
DOIs | |
State | Published - Jan 20 2016 |
Bibliographical note
Publisher Copyright:© 2016 the authors.
Keywords
- Hippocampus
- Noradrenaline
- Norepinphrine
- Place field
- VTE
- Vicarious trial and error