Abstract
The homeostasis of cellular activities is essential for the normal functioning of living organisms. Hence, the ability to regulate the fates of cells is of great significance for both fundamental chemical biology studies and therapeutic development. Despite the notable success of small-molecule drugs that normally act on cellular protein functions, current clinical challenges have highlighted the use of macromolecules to tune cell function for improved therapeutic outcomes. As a class of hybrid biomacromolecules gaining rapidly increasing attention, protein conjugates have exhibited great potential as versatile tools to manipulate cell function for therapeutic applications, including cancer treatment, tissue engineering, and regenerative medicine. Therefore, recent progress in the design and assembly of protein conjugates used to regulate cell function is discussed in this review. The protein conjugates covered here are classified into three different categories based on their mechanisms of action and relevant applications: (1) regulation of intercellular interactions; (2) intervention in intracellular biological pathways; (3) termination of cell proliferation. Within each genre, a variety of protein conjugate scaffolds are discussed, which contain a diverse array of grafted molecules, such as lipids, oligonucleotides, synthetic polymers, and small molecules, with an emphasis on their conjugation methodologies and potential biomedical applications. While the current generation of protein conjugates is focused largely on delivery, the next generation is expected to address issues of site-specific conjugation, in vivo stability, controllability, target selectivity, and biocompatibility.
Original language | English (US) |
---|---|
Pages (from-to) | 1771-1784 |
Number of pages | 14 |
Journal | Bioconjugate Chemistry |
Volume | 33 |
Issue number | 10 |
DOIs | |
State | Published - Oct 19 2022 |
Bibliographical note
Funding Information:This work was supported by GM084152 (M.D.D.), GM141853 (M.D.D.), CA185627 (C.R.W.), CA247681 (C.R.W.), and NSF Grant ECCS-2025124 to the Minnesota Nano Center. Y.W. was funded by a Doctoral Dissertation Fellowship from the University of Minnesota.
Publisher Copyright:
© 2022 American Chemical Society. All rights reserved.