(Male, Bachelor) and (Female, Ph.D) have different connotations: Parallelly annotated stylistic language dataset with multiple personas

Dongyeop Kang, Varun Gangal, Eduard Hovy

Research output: Chapter in Book/Report/Conference proceedingConference contribution

10 Scopus citations

Abstract

Stylistic variation in text needs to be studied with different aspects including the writer's personal traits, interpersonal relations, rhetoric, and more. Despite recent attempts on computational modeling of the variation, the lack of parallel corpora of style language makes it difficult to systematically control the stylistic change as well as evaluate such models. We release PASTEL, the parallel and annotated stylistic language dataset, that contains ≈ 41K parallel sentences (8.3K parallel stories) annotated across different personas. Each persona has different styles in conjunction: gender, age, country, political view, education, ethnic, and time-of-writing. The dataset is collected from human annotators with solid control of input denotation: not only preserving original meaning between text, but promoting stylistic diversity to annotators. We test the dataset on two interesting applications of style language, where PASTEL helps design appropriate experiment and evaluation. First, in predicting a target style (e.g., male or female in gender) given a text, multiple styles of PASTEL make other external style variables controlled (or fixed), which is a more accurate experimental design. Second, a simple supervised model with our parallel text outperforms the unsupervised models using nonparallel text in style transfer. Our dataset is publicly available1.

Original languageEnglish (US)
Title of host publicationEMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference
PublisherAssociation for Computational Linguistics
Pages1696-1706
Number of pages11
ISBN (Electronic)9781950737901
StatePublished - 2019
Externally publishedYes
Event2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019 - Hong Kong, China
Duration: Nov 3 2019Nov 7 2019

Publication series

NameEMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference

Conference

Conference2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019
Country/TerritoryChina
CityHong Kong
Period11/3/1911/7/19

Bibliographical note

Publisher Copyright:
© 2019 Association for Computational Linguistics

Fingerprint

Dive into the research topics of '(Male, Bachelor) and (Female, Ph.D) have different connotations: Parallelly annotated stylistic language dataset with multiple personas'. Together they form a unique fingerprint.

Cite this